Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fast inrush voltage and current restraining method for droop controlled inverter during grid fault clearance in distribution network

Control mode switching strategy of droop controlled inverter can effectively avoid overcurrent during grid fault, but it is easy to cause inrush voltage and current during grid fault clearance, which leads to the failure of fault ride through process of the distribution network. In this study, a new control mode re-switching method is proposed on the basis of restricting the outputs of the off-line controllers, which can make sure that the inrush voltage and current are suppressed and return to the normal condition quickly. First, the dynamic characteristics of fault current of droop controlled inverter are analysed. Then, the instantaneous inrush voltage and current caused by the output saturations of voltage controller and power controller before the re-switching process are mainly discussed. This method takes full advantage of integration of the existing off-line controllers to limit the output saturations, which can make the inrush problems well solved, and reduce the influence on grid connected inverters and the distribution network. Simulation results verify the validity of the theoretical analysis.

References

    1. 1)
      • 12. Plet, C.A., Graovac, M., Green, T.C., et al: ‘Fault response of grid-connected inverter dominated networks’. IEEE PES General Meeting, RI, USA, September, 2010, pp. 18.
    2. 2)
      • 16. Oureilidis, K.O., Demoulias, C.S.: ‘A fault clearing method in converter-dominated microgrids with conventional protection means’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 46284640.
    3. 3)
      • 2. Rocabert, J., Luna, A., Blaabjerg, F., et al: ‘Control of power converters in AC microgrids’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 47344749.
    4. 4)
      • 5. Moursi, M.S.E., Xiao, W., Kirtley, J.LJr.: ‘Fault ride through capability for grid interfacing large scale PV power plants’, IET Gener. Transm. Distrib., 2013, 7, (9), pp. 10271036.
    5. 5)
      • 22. Geng, H., Liu, C., Yang, G.: ‘LVRT capability of DFIG-based WECS under asymmetrical grid fault condition’, IEEE Trans. Ind. Electron., 2013, 60, (6), pp. 24952509.
    6. 6)
      • 18. Vasquez, J.C., Guerrero, J.M., Luna, A., et al: ‘Adaptive droop control applied to voltage source inverters operating in grid-connected and islanded modes’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 40884096.
    7. 7)
      • 24. ‘Grid Code High and Extra High Voltage - E.ON Netz’. Available at http://www.eon-netz.com, accessed 1 April 2006.
    8. 8)
      • 17. Shuai, Z., Huang, W., Shen, C., et al: ‘Characteristics and restraining method of fast transient inrush fault currents in synchronverters’, IEEE Trans. Ind. Electron., 2017, 64, (9), pp. 74877497.
    9. 9)
      • 14. Paquette, A.D., Divan, D.M.: ‘Virtual impedance current limiting for inverters in microgrids with synchronous generators’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 16301638.
    10. 10)
      • 13. Etemadi, A.H., Iravani, R.: ‘Overcurrent and overload protection of directly voltage-controlled distributed resources in a microgrid’, IEEE Trans. Ind. Electron., 2013, 60, (12), pp. 56295638.
    11. 11)
      • 21. Zhao, M., Yuan, X., Hu, J., et al: ‘Voltage dynamics of current control time-scale in a VSC-connected weak grid’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 29252937.
    12. 12)
      • 23. ‘Networks and System Rules of the German Transmission System Operators – Transmission Code 2007’. Available at http://www.vdn-berlin.de, accessed 1 August 2007.
    13. 13)
      • 10. Zhong, Q.C.: ‘Robust droop controller for accurate proportional load sharing among inverters operated in parallel’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 12811290.
    14. 14)
      • 15. Bottrell, N., Green, T.C.: ‘Comparison of current-limiting strategies during fault ride-through of inverters to prevent latch-up and wind-up’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 37863797.
    15. 15)
      • 9. Souza, W.F., Mendes, M.A.S., Lopes, L.A.C.: ‘Power sharing control strategies for a three-phase microgrid in different operating condition with droop control and damping factor investigation’, IET Renew. Power Gener., 2015, 9, (7), pp. 831839.
    16. 16)
      • 11. Shuai, Z., Shen, C., Yin, X., et al: ‘Fault analysis of inverter-interfaced distributed generators with different control schemes’, IEEE Trans. Power Deliv., PP, (99), pp. 11DOI: 10.1109/TPWRD. 2017.2717388.
    17. 17)
      • 4. Mokryani, G., Siano, P., Piccolo, A., et al: ‘Improving fault ride-through capability of variable speed wind turbines in distribution networks’, IEEE Syst. J., 2013, 7, (4), pp. 713722.
    18. 18)
      • 3. Chen, X., Zhang, Y., Wang, S., et al: ‘Impedance-phased dynamic control method for grid-connected inverters in a weak grid’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 274283.
    19. 19)
      • 6. Shuai, Z., Sun, Y., Shen, Z.J., et al: ‘Microgrid stability: classification and a review’, Renew. Sustain. Energy Rev., 2016, 58, pp. 167179.
    20. 20)
      • 1. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., et al: ‘Power-electronic systems for the grid integration of renewable energy sources: a survey’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10021016.
    21. 21)
      • 7. Lee, C.T., Hsu, C.W., Cheng, P.T.: ‘A low voltage ride through technique for grid-connected converters of distributed energy resources’, IEEE Trans. Ind. Appl., 2011, 47, (4), pp. 18211832.
    22. 22)
      • 8. Yao, W., Chen, M., Matas, J., et al: ‘Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing’, IEEE Trans. Ind. Electron., 2011, 58, (2), pp. 576588.
    23. 23)
      • 19. Majumder, R.: ‘Some aspects of stability in microgrids’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 32433252.
    24. 24)
      • 20. Shuai, Z., Hu, Y., Peng, Y., et al: ‘Dynamic stability analysis of synchronverter-dominated microgrid based on bifurcation theory’, IEEE Trans. Ind. Electron., 2017, 64, (9), pp. 74677477.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1209
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1209
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address