access icon free Self-tuned fuzzy-proportional–integral compensated zero/minimum active power algorithm based dynamic voltage restorer

Voltage sag is the most common and severe power quality problem in the recent times due to its detrimental effects on modern sensitive equipment. Generally, direct-on-line starting of the three-phase induction motor (IM) and various kinds of short circuit fault are directly responsible for this event. This study investigates the impacts of starting and stopping of two three-phase IMs on the load voltage profile. To be more critical, two three-phase short circuit faults and one unsymmetrical fault are also simulated in the same network at different instants of time. A simple control algorithm of a real power optimised dynamic voltage restorer (DVR) with a reduced power factor strategy is presented to protect the sensitive load from these types of detrimental events. A novel fuzzy-proportional–integral based self-tuned control methodology is implemented in the proposed work to compensate the loss in the DVR circuit as well as to regulate the load voltage and the direct current link voltage. The results show the effectiveness of the adopted control scheme in DVR application to mitigate the voltage sag.

Inspec keywords: power factor; fault simulation; voltage control; load regulation; power control; PI control; starting; induction motors; machine control; electric current control; fuzzy control

Other keywords: load voltage regulation; three-phase induction motor; reduced power factor strategy; three-phase short circuit faults; real power optimised dynamic voltage restorer; zero-minimum active power algorithm; fuzzy-proportional-integral based self-tuned control methodology; IM; DVR; voltage sag mitigation; power quality problem; direct-on-line starting; self-tuned fuzzy-proportional-integral compensation; direct current link voltage

Subjects: Current control; Asynchronous machines; Fuzzy control; Control of electric power systems; Power and energy control; Voltage control

References

    1. 1)
      • 12. Nielsan, J.G., Blaabjerg, F.: ‘Comparison of system topologies for dynamic voltage restorers’. Proc. Industry Applications Conf., USA, October 2001, pp. 23972403.
    2. 2)
      • 24. Sundarabalan, C.K., Selvi, K.: ‘Compensation of voltage disturbances using PEMFC supported dynamic voltage restorer’, Int. J. Electr. Power Energy Syst., 2015, 71, pp. 7792.
    3. 3)
      • 23. Li, Y.W., Vilathgamuwa, D.M., Blaabjerg, F., et al: ‘A robust control scheme for medium-voltage-level DVR implementation’, IEEE Trans. Ind. Electr., 2007, 54, (4), pp. 22492261.
    4. 4)
      • 7. Sannino, A., Miller, M.G., Bollen, M.H.J.: ‘Overview of voltage sag mitigation’. Proc. IEEE Power Engineering Society Winter Meeting, Singapore, August 2002, pp. 28722878.
    5. 5)
      • 5. Kamble, S., Thorat, C.: ‘Characteristics analysis of voltage sag in distribution system using rms voltage method’, ACEEE Int. J. Electr. Power Eng., 2012, 3, (1), pp. 5561.
    6. 6)
      • 15. Nielsen, J. G., Newman, M., Nielsen, H., et al: ‘Control and testing of a dynamic voltage restorer (DVR) at medium voltage level’, IEEE Trans. Power Electron., 2004, 19, (3), pp. 806813.
    7. 7)
      • 19. Mudi, R.K., Pal, N.R.: ‘A robust self-tuning scheme for PI- and PD-type fuzzy controllers’, IEEE Trans. Fuzzy Syst., 1999, 7, (1), pp. 216.
    8. 8)
      • 9. Ghosh, A., Ledwich, G.: ‘Custom power devices: an introduction’, inPower quality enhancement using custom power device’ (Springer, Boston, MA, USA, 2002, 1st edn.), pp. 113136.
    9. 9)
      • 6. Lamoree, J., Mueller, D., Vinett, P., et al: ‘Voltage sag analysis case studies’, IEEE Trans. Ind. Appl., 1994, 30, (4), pp. 10831089.
    10. 10)
      • 18. Vilathagamuwa, D.M., Wijekoon, H.M., Choi, S.S.: ‘Interline dynamic voltage restorer: a novel and economical approach for multi-line power quality compensation’. Proc. Industry Applications Conf., Salt Lake City, UT, USA, January 2004, pp. 833840.
    11. 11)
      • 22. Vilathgamuwa, M., Perera, A.A.D.R., Choi, S.S.: ‘Performance improvement of the dynamic voltage restorer with closed-loop load voltage and current-mode control’, IEEE Trans. Power Electron., 2002, 17, (5), pp. 824834.
    12. 12)
      • 8. Hingorani, N.G.: ‘Introducing custom power’, IEEE Spectr., 1995, 32, (6), pp. 4l48.
    13. 13)
      • 10. Vilathgamuwa, M., Perera, A.A.D.R., Choi, S.S., et al: ‘Control of energy optimized dynamic voltage restorer’. The 25th Annual Conference of the IEEE Industrial Electronics Society (IECON '99 Proceedings), San Jose, CA, USA, 29 November–3 December 1999, pp. 873878.
    14. 14)
      • 13. Al-Hadidi, H.K., Gole, A.M., Jacobson, D.A.: ‘Minimum power operation of cascade inverter-based dynamic voltage restorer’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 889898.
    15. 15)
      • 1. McGranaghan, M.F., Mueller, D.R., Samotyj, M.J.: ‘Voltage sags in industrial systems’, IEEE Trans. Ind. Appl., 1993, 29, (2), pp. 397403.
    16. 16)
      • 14. Li, Z., Li, W., Pan, T.: ‘An optimized compensation strategy of DVR for micro-grid voltage sag’, Prot. Control Mod. Power Syst., 2016, 1, (10), pp. 18.
    17. 17)
      • 21. Hojabri, M., Hojabri, M., Toudeshki, A.: ‘Passive damping filter design and application for three-phase PV grid-connected inverter’, Int. J. Electr. Electron. Data Commun., 2015, 3, (6), pp. 5056.
    18. 18)
      • 17. Zhou, J., Zhou, H., Qi, Z.: ‘The study on a dual-feed-forward control of DVR to mitigate the impact of voltage sags caused by induction motor starting’. Proc. Int. Conf. on Electrical Machines and Systems, Wuhan, China, February 2009, pp. 14971500.
    19. 19)
      • 3. Bollen, M.H.J.: ‘Understanding power quality problems’ (Wiley-IEEE Press, Hoboken, NJ, USA, 1999).
    20. 20)
      • 4. Honrubia-Escribano, A., Gomez-Lazaro, E., Molina-Garcia, A., et al: ‘Influence of voltage dips on industrial equipment: analysis and assessment’, Int. J. Electr. Power Energy Syst., 2012, 41, pp. 8795.
    21. 21)
      • 20. Saleh, M., Esa, Y., Mhandi, Y., et al: ‘Design and implementation of CCNY DC microgrid testbed’. Proc. Industry Applications Society Annual Meeting, Portland, OR, USA, October 2016, pp. 17.
    22. 22)
      • 16. Huweg, A.F., Bashi, S.M., Marium, N.: ‘A STATCOM simulation model to improve voltage sag due to starting of high power induction motor’. Proc. National Power and Energy Conf., Kuala Lumpur, Malaysia, July 2005, pp. 148152.
    23. 23)
      • 11. Vilathgamuwa, D., Wijekoon, H.M., Choi, S.S.: ‘A novel technique to compensate voltage sags in multiline distribution system – the interline dynamic voltage restorer’, IEEE Trans. Ind. Electr., 2006, 53, (5), pp. 16031611.
    24. 24)
      • 2. Moreno-Munoz, A., De-la-Rosa, J.J.G., Lopez-Rodriguez, M.A., et al: ‘Improvement of power quality using distributed generation’, Int. J. Electr. Power Energy Syst., 2010, 32, (10), pp. 10691076.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1170
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1170
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading