http://iet.metastore.ingenta.com
1887

Reactive power compensation using electric vehicles considering drivers’ reasons

Reactive power compensation using electric vehicles considering drivers’ reasons

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The node voltage profile is more likely to be violated as the electric vehicles (EVs) charging load spreads in distribution network. Due to the stochastic nature of EV charging load spatially, more flexible reactive power compensation in different locations becomes important. However, the conventional reactive power compensation equipment has no flexibility spatially. Therefore, two kinds of reactive power compensation strategies using EVs considering drivers’ reasons are proposed. Drivers’ reasons contain charging demand, charging opportunity loss (time) and profit. In Strategy 1, EV chargers are used to fully compensate reactive power after finishing the unregulated charging. Thus, drivers’ charging behaviour is not influenced at all. In Strategy 2, the operating power factors of EV chargers are treated as variables for the optimisation. The constraint of operating power factors is derived from analysing the charging demand and the charging opportunity loss (time) for drivers. Then, in order to motivate drivers, an incentive method is introduced based on the quantification of each driver's contribution to the voltage. The case study shows that Strategy 1 performs well at nodes having the non-significant voltage deviation without any constraint on driver's charging behaviour, while Strategy 2 performs well at nodes where the voltages deviation is significant.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1114
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1114
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address