access icon free Chance-constrained scheduling model of grid-connected microgrid based on probabilistic and robust optimisation

This study presents a chance-constrained scheduling model based on probabilistic and robust optimisation to handle the uncertainty of renewable energy generation and loads in microgrids. In order to generate appropriate scenarios, a large number of scenarios are generated by a Latin hypercube sampling Monte Carlo method and reduced by a fast forward selection algorithm. With the aggregated scenarios, a probabilistic scheduling model is established to obtain the expectation of schedules in different probability scenario. Aiming at taking full use of the generated scenarios, a robust optimisation is applied to the probabilistic model to consider the worst situations. The scheduling model proposed in this study combines the probabilistic and robust optimisation, in which the probabilistic one utilises the aggregated scenarios to introduce the probability characteristic of uncertainty and the robust one utilises the eliminated scenarios to consider the worst case of uncertainty. Finally, the proposed scheduling model is applied to a designed grid-connected microgrid, and the simulation results demonstrate the effectiveness of the proposed scheduling model.

Inspec keywords: Monte Carlo methods; probability; sampling methods; optimisation; power grids; power generation scheduling; distributed power generation

Other keywords: fast forward selection algorithm; probabilistic model; robust optimisation; renewable energy generation; chance-constrained scheduling model; grid-connected microgrid; probabilistic scheduling model; latin hypercube sampling Monte Carlo method

Subjects: Optimisation techniques; Monte Carlo methods; Distributed power generation

References

    1. 1)
      • 34. Heitsch, H., Misch, W.: ‘Scenario reduction algorithms in stochastic programming’, Comput. Optim. Appl., 2003, 24, (2-3), pp. 187206.
    2. 2)
      • 22. Mashayekh, S., Butler-Purry, K.L.: ‘An integrated security-constrained model-based dynamic power management approach for isolated microgrids in all-electric ships’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 29342945.
    3. 3)
      • 8. Kuznetsova, E., Ruiz, C., Li, Y.-F., et al: ‘Analysis of robust optimization for decentralized microgrid energy management under uncertainty’, Int. J. Electr. Power Energy Syst., 2015, 64, pp. 815832.
    4. 4)
      • 10. Bertsimas, D., Litvinov, E., Sun, X.A., et al: ‘Adaptive robust optimization for the security constrained unit commitment problem’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 5263.
    5. 5)
      • 35. Bertsimas, D., Brown, D.B., Caramanis, C.: ‘Theory and applications of robust optimization’, SIAM Rev., 2011, 53, (3), pp. 464501.
    6. 6)
      • 9. Khodaei, A., Bahramirad, S., Shahidehpour, M.: ‘Microgrid planning under uncertainty’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 24172425.
    7. 7)
      • 2. Katiraei, F., Iravani, R., Hatziargyriou, N., et al: ‘Microgrids management’, IEEE Power Energy Mag., 2008, 6, (3), pp. 5465.
    8. 8)
      • 26. Shamshad, A., Bawadi, M.A., Hussin, W.M.A.W., et al: ‘First and second order Markov chain models for synthetic generation of wind speed time series’, Energy, 2005, 30, (5), pp. 693708.
    9. 9)
      • 16. Wu, Z., Zeng, P., Zhang, X.P., et al: ‘A solution to the chance-constrained two-stage stochastic program for unit commitment with wind energy integration’, IEEE Trans. Power Syst., 2016, 31, (6), pp. 41854196.
    10. 10)
      • 13. Khan, S., Gawlik, W., Palensky, P.: ‘Reserve capability assessment considering correlated uncertainty in microgrid’, IEEE Trans. Sustain. Energy, 2016, 7, (2), pp. 637646.
    11. 11)
      • 37. Houwing, M., Negenborn, R.R., Schutter, B.D.: ‘Demand response with micro-chip systems’, Proc. IEEE, 2011, 99, (1), pp. 200213.
    12. 12)
      • 3. Arabali, A., Ghofrani, M., Etezadi-Amoli, M., et al: ‘Genetic-algorithm-based optimization approach for energy management’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 162170.
    13. 13)
      • 6. Su, W., Wang, J., Roh, J.: ‘Stochastic energy scheduling in microgrids with intermittent renewable energy resources’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 18761883.
    14. 14)
      • 27. Nfaoui, H., Essiarab, H., Sayigh, A.A.M.: ‘A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco’, Renew. Energy, 2004, 29, (8), pp. 14071418.
    15. 15)
      • 32. Mckay, M.D., Beckman, R.J., Conover, W.J.: ‘A comparison of three methods for selecting values of input variables in the analysis of output from a computer code’, Technometrics, 1979, 21, (1), pp. 239245.
    16. 16)
      • 11. Liu, J., Chen, H., Zhang, W., et al: ‘Energy management problems under uncertainties for grid-connected microgrids: a chance constrained programming approach’, IEEE Trans. Smart Grid, 2016, PP, (99), pp. 11.
    17. 17)
      • 7. Li, P., Xu, D., Zhou, Z., et al: ‘Stochastic optimal operation of microgrid based on chaotic binary particle swarm optimization’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 6673.
    18. 18)
      • 21. Khodabakhsh, R., Sirouspour, S.: ‘Optimal control of energy storage in a microgrid by minimizing conditional value-at-risk’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 12641273.
    19. 19)
      • 30. Ben-Tal, A., Nemirovski, A.: ‘Robust solutions of linear programming problems contaminated with uncertain data’, Math. Program., 2000, 88, (3), pp. 411424.
    20. 20)
      • 31. Bertsimas, D., Sim, M.: ‘The price of robustness’, Oper. Res., 2004, 52, (1), pp. 3553.
    21. 21)
      • 12. Guo, L., Liu, W., Jiao, B., et al: ‘Multi-objective stochastic optimal planning method for stand-alone microgrid system’, IET Gener. Transm. Distrib., 2014, 8, (7), pp. 12631273.
    22. 22)
      • 15. Zachar, M., Daoutidis, P.: ‘Microgrid/macrogrid energy exchange: a novel market structure and stochastic scheduling’, IEEE Trans. Smart Grid, 2016, PP, (99), pp. 11.
    23. 23)
      • 5. Niknam, T., Azizipanah-Abarghooee, R., Narimani, M.R.: ‘An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation’, Appl. Energy, 2012, 99, pp. 455470.
    24. 24)
      • 33. Papaefthymiou, G., Klockl, B.: ‘MCMC for wind power simulation’, IEEE Trans. Energy Convers., 2008, 23, (1), pp. 234240.
    25. 25)
      • 1. Hatziargyriou, N., Asano, H., Iravani, R., et al: ‘Microgrids’, IEEE Power Energy Mag., 2007, 5, (4), pp. 7894.
    26. 26)
      • 20. Mohan, V., Singh, J., Ongsakul, W.: ‘Sortino ratio based portfolio optimization considering Evs and renewable energy in microgrid power market’, IEEE Trans. Sustain. Energy, 2016, PP, (99), pp. 11.
    27. 27)
      • 18. Dall'Anese, E., Giannakis, G.B.: ‘Risk-constrained microgrid reconfiguration using group sparsity’, IEEE Trans. Sustain. Energy, 2014, 5, (4), pp. 14151425.
    28. 28)
      • 36. Zeng, B., Zhao, L.: ‘Solving two-stage robust optimization problems using a column-and-constraint generation method’, Oper. Res. Lett., 2013, 41, (5), pp. 457461.
    29. 29)
      • 23. Zhao, C., Guan, Y.: ‘Unified stochastic and robust unit commitment’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 33533361.
    30. 30)
      • 25. Jiang, Q., Xue, M., Geng, G.: ‘Energy management of microgrid in grid-connected and stand-alone modes’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 33803389.
    31. 31)
      • 4. Alavi, S.A., Ahmadian, A., Aliakbar-Golkar, M.: ‘Optimal probabilistic energy management in a typical micro-grid based-on robust optimization and point estimate method’, Energy Convers. Manage., 2015, 95, pp. 314325.
    32. 32)
      • 17. Hojjat, M., Javidi, M.H.: ‘Chance-constrained programming approach to stochastic congestion management considering system uncertainties’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 14211429.
    33. 33)
      • 14. Yang, Z., Wu, R., Yang, J., et al: ‘Economical operation of microgrid with various devices via distributed optimization’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 857867.
    34. 34)
      • 38. Zhang, J., Cheng, H., Wang, C.: ‘Technical and economic impacts of active management on distribution network’, Int. J. Electr. Power Energy Syst., 2009, 31, (2-3), pp. 130138.
    35. 35)
      • 24. Jiang, R., Wang, J., Zhang, M., et al: ‘Two-stage minimax regret robust unit commitment’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 22712282.
    36. 36)
      • 39. Thorstensen, B.: ‘A parametric study of fuel cell system efficiency under full and part load operation’, J. Power Sources, 2001, 92, (1-2), pp. 916.
    37. 37)
      • 19. Ravichandran, A., Sirouspour, S., Malysz, P., et al: ‘A chance-constraints-based control strategy for microgrids with energy storage and integrated electric vehicles’, IEEE Trans. Smart Grid, 2016, PP, (99), pp. 11.
    38. 38)
      • 29. Liu, C., Wang, X., Wu, X., et al: ‘Economic scheduling model of microgrid considering the lifetime of batteries’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 759767.
    39. 39)
      • 28. Liu, C., Wang, X., Wu, X., et al: ‘Robust optimal dispatch model of islanded microgrids with uncertain renewable energy sources’. 2016 China Int. Conf. on Electricity Distribution (CICED), Xi'an, China, August 2016, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1039
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1039
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading