Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Impact of superconducting fault current limiter on the distributed energy source work

Globally there has been a sharp increase in the number of renewable energy sources (RESs) connected to electrical power systems (EPSs). At the same time, in many countries domestic grid codes impose strict requirements on the work of these sources in the case of a short circuit. Regulations on low-voltage fault ride-through (LVFRT) require that the RES support the work of the EPS during disturbances. In such cases, the RES can be damaged by prolonged duration of short circuit currents. Application of superconducting fault current limiters (SFCLs) protects the RES from the effect of short circuits and improves LVFRT capability. This study describes simulation studies showing the impact of the SFCL on the values of the short circuit current and the voltage at the RES terminals for different short circuit locations. Research results have confirmed a positive impact of the SCFL on the RES during disturbances.

References

    1. 1)
      • 27. Patil, A.P., Chaudhary, P.A., Tembhurnikar, G.P.: ‘SFCL prevent distributed generating sources from blackout in smart grid’, Int. Res. J. Eng. Technol., IRJET, 2015, 02, (06), pp. 12961301.
    2. 2)
      • 3. Eltawil, M.A., Zhao, Z.: ‘Grid-connected photovoltaic power systems: technical and potential problems – a review’, Renew. Sustain. Energy Rev., 2010, 14, pp. 112129.
    3. 3)
      • 32. Kozak, J., Majka, M., Kozak, S., et al: ‘Design and tests of coreless inductive superconducting fault current limiter’, IEEE Trans. Appl. Supercond., 2012, 22, (3).
    4. 4)
      • 33. Kafarski, M.: ‘Hybrydowe modele numeryczne nadprzewodnikowych ograniczników prądu do wyznaczania zmian prądu i temperatury podczas zwarcia’. PhD dissertation, Lublin University of Technology, Lublin, 2012.
    5. 5)
      • 22. Naderi, S.B., Negnevitsky, M., Jalilian, A., et al: ‘Optimum resistive type fault current limiter: an efficient solution to achieve maximum fault ride-through capability of fixed speed wind turbines during symmetrical and asymmetrical grid faults’. Industry Applications Society Annual Meeting, Addison, TX, 2015.
    6. 6)
      • 2. Al-Shetwi, A.Q., Sujod, M.Z., Ramli, N.L.: ‘A review of the fault ride through requirements in different grid codes concerning penetration of PV system to the electric power network’, ARPN J. Eng. Appl. Sci., 2015, 10, (21), pp. 99069912.
    7. 7)
      • 1. Zhang, X., Cao, X., Wang, W., et al: ‘Fault ride-through study of wind turbines’, J. Power Energy Eng., 2013, 1, pp. 2529.
    8. 8)
      • 14. Kacejko, P., Machowski, J.: ‘Zwarcia w systemach elektroenergetycznych’, WNT, Warszawa, 2002.
    9. 9)
      • 24. Chen, L., Deng, Ch., Zheng, F., et al: ‘Fault ride-through capability enhancement of DFIG-based wind turbine with a flux-coupling-type SFCL employed at different locations’, IEEE Trans. Appl. Supercond., 2015, 25, (3).
    10. 10)
      • 19. Nagarathna, M.C., Vijay Murthy, H., Shashikumar, R.: ‘A review on super conducting fault current limiter (SFCL) in power system’, Int. J. Eng. Res. Gen. Sci., 2015, 3, (2), Part 2, pp. 485489.
    11. 11)
      • 10. Crăciun, B.I., Kerekes, T., Séra, D., et al: ‘Overview of recent grid codes for PV power integration’. 13th Int. Conf. Optimization of Electrical and Electronic Equipment (OPTIM), Brasov, Romania, May 2012, pp. 959965.
    12. 12)
      • 18. Hazel, T.: ‘Limiting short-circuit currents in medium-voltage applications’. Available at http://www.schneider-electric.com/.
    13. 13)
      • 4. Chen, Z., Blaabjerg, F.: ‘Wind farm – a power source in future power systems’, Renew. Sustain. Energy Rev., 2009, 13, pp. 12881300.
    14. 14)
      • 9. Dittrich, A., Stoev, A.: ‘Comparison of fault ride-through strategies for wind turbines with DFIM generators’. 2005 European Conf. on Power Electronics and Applications, Dresden, Germany, September 2005, pp. 18.
    15. 15)
      • 11. Elshiekh, M.E., Mansour, D.-E.A., Azmy, A.M.: ‘Improving fault ride-through capability of DFIG-based wind turbine using superconducting fault current limiter’, IEEE Trans. Appl. Supercond., 2013, 23, (3).
    16. 16)
      • 8. García-Sánchez, T., Gómez-Lázaro, E., Molina-García, A.: ‘A review and discussion of the grid-code requirements for renewable energy sources in Spain’. Int. Conf. on Renewable Energies and Power Quality (ICREPQ'14), Cordoba, Spain, April 2014, pp. 565570.
    17. 17)
      • 23. Ngamroo, I., Karaipoom, T.: ‘Improving low-voltage ride-through performance and alleviating power fluctuation of DFIG wind turbine in DC microgrid by optimal SMES with fault current limiting function’, IEEE Trans. Appl. Supercond., 2014, 24, (5).
    18. 18)
      • 6. Instrukcja Ruchu i Eksploatacji Sieci Dystrybucyjnej. Energa-Operator Spółka Akcyjna.
    19. 19)
      • 30. Kozak, J., Janowski, T., Kozak, S., et al: ‘Design and testing of 230 V inductive type of superconducting fault current limiter with an open core’, IEEE Trans. Appl. Supercond., 2005, 15, (2), pp. 20312034.
    20. 20)
      • 29. Kozieł, J.: ‘Aktualny stan badań nadprzewodnikowych ograniczników prądów’, Prace Instytutu Elektrotechniki, zeszyt 238, 2008.
    21. 21)
      • 35. Lubośny, Z.: ‘Elektroenergetyczna automatyka zabezpieczeniowa farm wiatrowych’, WNT Warszawa, 2013.
    22. 22)
      • 16. CIGRE Working Group 13.10: ‘Fault current limiters report on the activities of CIGRE WG A3.10’.
    23. 23)
      • 12. Lopez, J., Gubia, E., Olea, E., et al: ‘Ride through of wind turbines with doubly fed induction generator under symmetrical voltage dips’, IEEE Trans. Ind. Electron., 2009, 56, pp. 42464254.
    24. 24)
      • 28. Woo-Jae, P., Byung, C.S., Jung-Wook, P.: ‘The effect of SFCL on electric power grid with wind-turbine generation system’, IEEE Trans. Appl. Supercond., 2010, 20, (3), pp. 11771181.
    25. 25)
      • 15. ‘Is-limiter applications to reduce high short-circuit currents’. Available at http://new.abb.com/medium-voltage/apparatus/fault-current-limiting/current-limiter/current-limiter-applications.
    26. 26)
      • 20. Steurer, M., Fröhlich, K.: ‘Current limiters – state of the art’. Fourth Workshop & Conf. on EHV Technology CSIC Auditorium, Bangalore, India.
    27. 27)
      • 34. Kudymow, A., Schacherer, C., Noe, M., et al: ‘Experimental investigation of parallel connected YBCO coated conductors for resistive fault current limiters’, IEEE Trans. Appl. Supercond., 2009, 19, (3), pp. 18061809.
    28. 28)
      • 25. Czerwiński, D.: ‘Dynamika zmian cieplnych w cienkowarstwowych taśmach HTS w stanach przejściowych’, Zeszyty Naukowe Politechniki Łódzkiej, Nr 1169, Elektryka, z. 125, 2013.
    29. 29)
      • 21. Mendrock, O.: ‘Short-circuit current limitation by series reactors by series reactors’, Energize, 2009, 10, pp. 4549.
    30. 30)
      • 31. Kozak, J., Majka, M., Janowski, T., et al: ‘Tests and performance analysis of coreless inductive HTS fault current limiters’, IEEE Trans. Appl. Supercond., 2011, 21, (3), pp. 13031306.
    31. 31)
      • 5. Rusiński, J.: ‘Szeregowo-równoległy kompensator aktywny w układzie sprzęgania źródeł rozproszonych z siecią elektroenergetyczną’. Sterowanie w Energoelektronice i Napędzie Elektrycznym – SENE 2011 Łódź, Polska, 2011.
    32. 32)
      • 17. Guo, W., Xiao, L., Dai, S., et al: ‘LVRT capability enhancement of DFIG with switch-type fault current limiter’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 332342.
    33. 33)
      • 13. Blecharz, K.: ‘Sterowanie maszyną dwustronnie zasilaną, pracującą jako generator w elektrowni wiatrowej przy zapadach napięcia’, Acta Energ., 2010, 1, pp. 515.
    34. 34)
      • 26. Kozak, J., Majka, M., Kozak, S., et al: ‘Comparison of inductive and resistive SFCL’, IEEE Trans. Appl. Supercond., 2013, 23, (3).
    35. 35)
      • 7. Instrukcja Ruchu i Eksploatacji Sieci Przesyłowej. Warunki korzystania, prowadzenia ruchu, eksploatacji i planowania rozwoju sieci. PSE Operator SA.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.1013
Loading

Related content

content/journals/10.1049/iet-gtd.2017.1013
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address