Carrier mobility and trap distribution dependent flashover characteristics of epoxy resin

Carrier mobility and trap distribution dependent flashover characteristics of epoxy resin

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Epoxy disc-type spacer, as the major insulator of gas insulated transmission line, plays a significant role in the reliability and safety of the entire power grid. While surface charge accumulation on the spacer could induce flashover and accelerate degradation of the insulator, which threats the operation of high-voltage DC transmission and grid. In this study, a corona discharging system was employed to charge the epoxy samples before the charge dissipation measured, and the surface flashover voltages of samples with different modification time under DC voltage were also measured, the results are obtained from the research. It is found that the carrier mobility and surface flashover voltage of samples are affected by modification time, and maximum value of both can be obtained when the sample is modified for 60 min. Under the combined voltages, the initial surface charge density and carrier mobility are affected by both pulse voltage and modification time. It is indicated that surface modification is an appropriate method which can significantly inhibit the surface charge accumulation, and improve the flashover characteristics of epoxy sample by increasing carrier mobility. The trap distribution characteristics suggested that the modification treatment and charging condition have a significant effect on the depth and density of trap.

Related content

This is a required field
Please enter a valid email address