http://iet.metastore.ingenta.com
1887

Carrier mobility and trap distribution dependent flashover characteristics of epoxy resin

Carrier mobility and trap distribution dependent flashover characteristics of epoxy resin

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Epoxy disc-type spacer, as the major insulator of gas insulated transmission line, plays a significant role in the reliability and safety of the entire power grid. While surface charge accumulation on the spacer could induce flashover and accelerate degradation of the insulator, which threats the operation of high-voltage DC transmission and grid. In this study, a corona discharging system was employed to charge the epoxy samples before the charge dissipation measured, and the surface flashover voltages of samples with different modification time under DC voltage were also measured, the results are obtained from the research. It is found that the carrier mobility and surface flashover voltage of samples are affected by modification time, and maximum value of both can be obtained when the sample is modified for 60 min. Under the combined voltages, the initial surface charge density and carrier mobility are affected by both pulse voltage and modification time. It is indicated that surface modification is an appropriate method which can significantly inhibit the surface charge accumulation, and improve the flashover characteristics of epoxy sample by increasing carrier mobility. The trap distribution characteristics suggested that the modification treatment and charging condition have a significant effect on the depth and density of trap.

References

    1. 1)
      • J.J. Jung , S. Cui , S.K. Sul .
        1. Jung, J.J., Cui, S., Sul, S.K.: ‘A new topology of multilevel VSC converter for hybrid HVDC transmission system’, IEEE Applied Power Electronics Conf. and Exposition, 2016, pp. 26202628.
        . IEEE Applied Power Electronics Conf. and Exposition , 2620 - 2628
    2. 2)
      • J.W. Feltes , B.D. Gemmell , D. Retzmann .
        2. Feltes, J.W., Gemmell, B.D., Retzmann, D.: ‘From smart grid to super grid: solutions with HVDC and FACTS for grid access of renewable energy sources’, IEEE Power and Energy Society General Meeting, 2011, pp. 16.
        . IEEE Power and Energy Society General Meeting , 1 - 6
    3. 3)
      • H. Hama , S. Okabe .
        3. Hama, H., Okabe, S.: ‘Cross-sectional study between SF6 and eco-friendly gases on dielectric coated electrodes for real-size gas insulated switchgear’, IEEE Trans. Dielectr. Electr. Insul., 2012, 19, (1), pp. 253262.
        . IEEE Trans. Dielectr. Electr. Insul. , 1 , 253 - 262
    4. 4)
      • G.M. Ma , H.Y. Zhou , C.R. Li .
        4. Ma, G.M., Zhou, H.Y., Li, C.R., et al: ‘Designing epoxy insulators in SF6-filled DC-GIL with simulations of ionic conduction and surface charging’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (6), pp. 33123320.
        . IEEE Trans. Dielectr. Electr. Insul. , 6 , 3312 - 3320
    5. 5)
      • H.C. Miller .
        5. Miller, H.C.: ‘Surface flashover of insulators’, IEEE Trans. Dielectr. Electr. Insul., 1988, 24, (5), pp. 765786.
        . IEEE Trans. Dielectr. Electr. Insul. , 5 , 765 - 786
    6. 6)
      • H. Iwabuchi , S. Matsuoka , A. Kumada .
        6. Iwabuchi, H., Matsuoka, S., Kumada, A., et al: ‘Influence of tiny metal particles on charge accumulation phenomena of GIS model spacer in high-pressure SF6 gas’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (5), pp. 18951901.
        . IEEE Trans. Dielectr. Electr. Insul. , 5 , 1895 - 1901
    7. 7)
      • D.E. A. Mansour , H. Kojima , N. Hayakawa .
        7. Mansour, D.E. A., Kojima, H., Hayakawa, N., et al: ‘Surface charge accumulation and partial discharge activity for small gaps of electrode/epoxy interface in SF6 gas’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, (4), pp. 11501157.
        . IEEE Trans. Dielectr. Electr. Insul. , 4 , 1150 - 1157
    8. 8)
      • B.X. Du , M. Xiao .
        8. Du, B.X., Xiao, M.: ‘Influence of surface charge on DC flashover characteristics of epoxy/BN nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (2), pp. 529536.
        . IEEE Trans. Dielectr. Electr. Insul. , 2 , 529 - 536
    9. 9)
      • K.D. Srivastava , J. Zhou .
        9. Srivastava, K.D., Zhou, J.: ‘Surface charging and flashover of spacers in SF6 under impulse voltages’, IEEE Trans. Dielectr. Electr. Insul., 1991, 26, (3), pp. 428442.
        . IEEE Trans. Dielectr. Electr. Insul. , 3 , 428 - 442
    10. 10)
      • B.X. Du , J.W. Zhang , Y. Gao .
        10. Du, B.X., Zhang, J.W., Gao, Y.: ‘Effect of nanosecond rise time of pulse voltage on the surface charge of epoxy/TiO2 nanocomposites’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (1), pp. 321328.
        . IEEE Trans. Dielectr. Electr. Insul. , 1 , 321 - 328
    11. 11)
      • S. Kumara , Y.V. Serdyuk , S.M. Gubanski .
        11. Kumara, S., Serdyuk, Y.V., Gubanski, S.M.: ‘Simulation of surface charge effect on impulse flashover characteristics of outdoor polymeric insulators’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (6), pp. 17541763.
        . IEEE Trans. Dielectr. Electr. Insul. , 6 , 1754 - 1763
    12. 12)
      • X. Jun , I.D. Chalmers .
        12. Jun, X., Chalmers, I.D.: ‘The influence of surface charge upon flash-over of particle-contaminated insulators in SF6 under impulse-voltage conditions’, J. Phys. D, Appl. Phys., 1997, 30, (30), p. 1055.
        . J. Phys. D, Appl. Phys. , 30 , 1055
    13. 13)
      • B.X. Du , J. Li , Q. Du .
        13. Du, B.X., Li, J., Du, Q., et al: ‘Surface charge and flashover voltage of EVA/CB nanocomposite under mechanical stresses’, IEEE Trans. Dielectr. Electr. Insul., 2017, 23, (6), pp. 37343741.
        . IEEE Trans. Dielectr. Electr. Insul. , 6 , 3734 - 3741
    14. 14)
      • Y. Jiang , Z. An , C. Liu .
        14. Jiang, Y., An, Z., Liu, C., et al: ‘Influence of oxyfluorination time on space charge behavior in polyethylene’, IEEE Trans. Dielectr. Electr. Insul., 2010, 17, (6), pp. 18141823.
        . IEEE Trans. Dielectr. Electr. Insul. , 6 , 1814 - 1823
    15. 15)
      • C. Li , J. He , J. Hu .
        15. Li, C., He, J., Hu, J.: ‘Surface morphology and electrical characteristics of direct fluorinated epoxy-resin/alumina composite’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 30713077.
        . IEEE Trans. Dielectr. Electr. Insul. , 5 , 3071 - 3077
    16. 16)
      • Z. An , Q. Yin , Y. Liu .
        16. An, Z., Yin, Q., Liu, Y., et al: ‘Modulation of surface electrical properties of epoxy resin insulator by changing fluorination temperature and time’, IEEE Trans. Dielectr. Electr. Insul., 2015, 22, (1), pp. 526534.
        . IEEE Trans. Dielectr. Electr. Insul. , 1 , 526 - 534
    17. 17)
      • B.X. Du , Z.L. Li , J. Li .
        17. Du, B.X., Li, Z.L., Li, J.: ‘Surface charge accumulation and decay of direct-fluorinated RTV silicone rubber’, IEEE Trans. Dielectr. Electr. Insul., 2014, 21, (5), pp. 23382342.
        . IEEE Trans. Dielectr. Electr. Insul. , 5 , 2338 - 2342
    18. 18)
      • C. Li , J. Hu , C. Lin .
        18. Li, C., Hu, J., Lin, C., et al: ‘The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites’, J. Phys. D, Appl. Phys., 2016, 49, (44), p. 445304.
        . J. Phys. D, Appl. Phys. , 44 , 445304
    19. 19)
      • J.G. Simmons , M.C. Tam .
        19. Simmons, J.G., Tam, M.C.: ‘Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions’, Phys. Rev. B, 1973, 7, (8), pp. 37063713.
        . Phys. Rev. B , 8 , 3706 - 3713
    20. 20)
      • A.P. Kharitonov , L.N. Kharitonova .
        20. Kharitonov, A.P., Kharitonova, L.N.: ‘Surface modification of polymers by direct fluorination: a convenient approach to improve commercial properties of polymeric articles’, Pure Appl. Chem., 2009, 81, (3), pp. 451471.
        . Pure Appl. Chem. , 3 , 451 - 471
    21. 21)
      • G. Teyssedre , C. Laurent .
        21. Teyssedre, G., Laurent, C.: ‘Charge transport modeling in insulating polymers: from molecular to macroscopic scale’, IEEE Trans. Dielectr. Electr. Insul., 2005, 12, (5), pp. 857875.
        . IEEE Trans. Dielectr. Electr. Insul. , 5 , 857 - 875
    22. 22)
      • F. Zhou , J. Li , Z. Yan .
        22. Zhou, F., Li, J., Yan, Z., et al: ‘Investigation of charge trapping and detrapping dynamics in LDPE, HDPE and XLPE’, IEEE Trans. Dielectr. Electr. Insul., 2017, 23, (6), pp. 37423751.
        . IEEE Trans. Dielectr. Electr. Insul. , 6 , 3742 - 3751
    23. 23)
      • M.M. Perlman , T.J. Sonnonstine , J.A. St. Pierre .
        23. Perlman, M.M., Sonnonstine, T.J., St. Pierre, J.A.: ‘Drift mobility determinations using surface-potential decay in insulators’, J. Appl. Phys., 1976, 47, (11), pp. 50165021.
        . J. Appl. Phys. , 11 , 5016 - 5021
    24. 24)
      • F. Saulnier , M. Dubois , K. Charlet .
        24. Saulnier, F., Dubois, M., Charlet, K., et al: ‘Direct fluorination applied to wood flour used as a reinforcement for polymers’, Carbohydr. Polym., 2013, 94, (1), pp. 642646.
        . Carbohydr. Polym. , 1 , 642 - 646
    25. 25)
      • A.P. Kharitonov , N. Prorokova , V. Istratkin .
        25. Kharitonov, A.P., Prorokova, N., Istratkin, V., et al: ‘Improvement of polypropylene nonwoven fabric antibacterial properties by the direct fluorination’, RSC Adv., 2015, 5, (55), pp. 4454544549.
        . RSC Adv. , 55 , 44545 - 44549
    26. 26)
      • N. Matsuoka , Y. Fuchi , M. Kozako .
        26. Matsuoka, N., Fuchi, Y., Kozako, M., et al: ‘Effect of permittivity variation on surface flashover of GIS epoxy spacer model in SF6 gas’, IEEE Int. Conf. on Dielectrics, 2016, pp. 9699.
        . IEEE Int. Conf. on Dielectrics , 96 - 99
    27. 27)
      • L.B. Schein , A. Peled , D. Glatz .
        27. Schein, L.B., Peled, A., Glatz, D.: ‘The electric field dependence of the mobility in molecularly doped polymers’, J. Appl. Phys., 1989, 66, (2), pp. 686692.
        . J. Appl. Phys. , 2 , 686 - 692
    28. 28)
      • H. Rodrigo , D. Kwag , L. Graber .
        28. Rodrigo, H., Kwag, D., Graber, L., et al: ‘AC flashover voltages along epoxy surfaces in gaseous helium compared to liquid nitrogen and transformer oil’, IEEE Trans. Appl. Supercond., 2014, 24, (3), pp. 16.
        . IEEE Trans. Appl. Supercond. , 3 , 1 - 6
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0984
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0984
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address