Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess A novel multiobjective generation and transmission investment framework for implementing 100% renewable energy sources

Over the last decade, it has been considerable attempts to replace thermal power plants by renewable energy sources (RESs), mainly to reduce harmful gaseous emissions. Ubiquitous nature of these sources in the emerging smart grid, demands a dominated RES power system for a long-term horizon. This study proposed a model for 100% RES-based system which is tractable and flexible enough to be used for any mixture of generation unit types with any level of uncertainty needless of the correlation between their random and unpredictable behaviours. To overcome the complex nature of RESs, an efficient stochastic multiobjective mixed-integer linear programming framework is proposed. The efficacy of the proposed model is evaluated via numerical simulation.

References

    1. 1)
      • 4. López, J.Á., Ponnambalam, K., Quintana, V.H.: ‘Generation and transmission expansion under risk using stochastic programming’, IEEE Trans. Power Syst., 2007, 22, (3), pp. 13691378.
    2. 2)
      • 35. PJM: ‘Metered load data - 2014 hourly load data’, 2015. Available at: http://www.pjm.com/markets-and-operations/ops-analysis/historical-load-data.aspx.
    3. 3)
      • 19. Mavalizadeh, H., Ahmadi, A., Heidari, A.: ‘Probabilistic multi-objective generation and transmission expansion planning problem using normal boundary intersection’, IET Gener. Transm. Distrib., 2015, 9, (6), pp. 560570.
    4. 4)
      • 15. Pozo, D., Sauma, E.E., Contreras, J.: ‘A three-level static MILP model for generation and transmission expansion planning’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 202210.
    5. 5)
      • 7. Sepasian, M.S., Seifi, H., Foroud, A.A., et al: ‘A multiyear security constrained hybrid generation-transmission expansion planning algorithm including fuel supply costs’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 16091618.
    6. 6)
      • 28. Ahmadi, A., Moghimi, H., Nezhad, A.E., et al: ‘Multiobjective economic emission dispatch considering combined heat and power by normal boundary intersection method’, Electr. Power Syst. Res., 2015, 129, pp. 3243.
    7. 7)
      • 26. MacQueen, J.: ‘Some methods for classification and analysis of multivariate observations’. Proc. of the Fifth Berkeley Symp. Mathematical Statistics and Probability, Oakland, CA, USA, 1967, vol. 1, no. 14, pp. 281297.
    8. 8)
      • 8. Alizadeh, B., Jadid, S.: ‘Reliability constrained coordination of generation and transmission expansion planning in power systems using mixed integer programming’, IET Gener. Transm. Distrib., 2011, 5, (9), pp. 948960.
    9. 9)
      • 23. Alguacil, N., Motto, A.L., Conejo, A.J.: ‘Transmission expansion planning: a mixed-integer lp approach’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 10701077.
    10. 10)
      • 3. Hand, M.: ‘Renewable electricity futures study’ (National Renewable Energy Laboratory, 2012).
    11. 11)
      • 33. GAMS Development Corporation: ‘General algebraic modeling system (gams)’, 2015. Available at: http://www.gams.com.
    12. 12)
      • 36. Villasana, R., Garver, L., Salon, S.: ‘Transmission network planning using linear programming’, IEEE Trans. Power Appar. Syst., 1985, PAS-104, (2), pp. 349356.
    13. 13)
      • 16. Motamedi, A., Zareipour, H., Buygi, M.O., et al: ‘A transmission planning framework considering future generation expansions in electricity markets’, IEEE Trans. Power Syst., 2010, 25, (4), pp. 19871995.
    14. 14)
      • 2. European Commission: ‘Renewable energy’, 2015. Available at: http://ec.europa.eu/energy/en/topics/renewable-energy.
    15. 15)
      • 10. Roh, J.H., Shahidehpour, M., Wu, L.: ‘Market-based generation and transmission planning with uncertainties’, IEEE Trans. Power Syst., 2009, 24, (3), pp. 15871598.
    16. 16)
      • 11. Roh, J.H., Shahidehpour, M., Fu, Y.: ‘Market-based coordination of transmission and generation capacity planning’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 14061419.
    17. 17)
      • 13. Xiaotong, L., Yimei, L., Xiaoli, Z., et al: ‘Generation and transmission expansion planning based on game theory in power engineering’, Syst. Eng. Procedia, 2012, 4, pp. 7986.
    18. 18)
      • 34. National Renewable Energy Laboratory: ‘System advisor model (sam)’, 2015. Available at: https://sam.nrel.gov/content/downloads.
    19. 19)
      • 18. Mavalizadeh, H., Ahmadi, A.: ‘Hybrid expansion planning considering security and emission by augmented epsilon-constraint method’, Int. J. Electr. Power Energy Syst., 2014, 61, pp. 90100.
    20. 20)
      • 27. Das, I., Dennis, J.E.: ‘Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems’, SIAM J. Optim., 1998, 8, (3), pp. 631657.
    21. 21)
      • 25. Akbari, T., Bina, M.T.: ‘A linearized formulation of ac multi-year transmission expansion planning: a mixed-integer linear programming approach’, Electr. Power Syst. Res., 2014, 114, pp. 93100.
    22. 22)
      • 17. Tor, O.B., Guven, A.N., Shahidehpour, M.: ‘Congestion-driven transmission planning considering the impact of generator expansion’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 781789.
    23. 23)
      • 12. Hariyanto, N., Nurdin, M., Haroen, Y., et al: ‘Decentralized and simultaneous generation and transmission expansion planning through cooperative game theory’, Int. J. Electr. Eng. Inf., 2009, 1, (2), pp. 149164.
    24. 24)
      • 30. Ahmadi, A., Kaymanesh, A., Siano, P., et al: ‘Evaluating the effectiveness of normal boundary intersection method for short-term environmental/economic hydrothermal self-scheduling’, Electr. Power Syst. Res., 2015, 123, pp. 192204.
    25. 25)
      • 22. Motto, A.L., Galiana, F.D., Conejo, A.J., et al: ‘Network-constrained multiperiod auction for a pool-based electricity market’, IEEE Trans. Power Syst., 2002, 17, (3), pp. 646653.
    26. 26)
      • 1. European Commission: ‘The 2020 climate and energy package’, 2015. Available at: http://ec.europa.eu/clima/policies/package/index_en.htm.
    27. 27)
      • 6. Samarakoon, H., Shrestha, R., Fujiwara, O.: ‘A mixed integer linear programming model for transmission expansion planning with generation location selection’, Int. J. Electr. Power Energy Syst., 2001, 23, (4), pp. 285293.
    28. 28)
      • 9. Sharan, I., Balasubramanian, R.: ‘Integrated generation and transmission expansion planning including power and fuel transportation constraints’, Energy Policy, 2012, 43, pp. 275284.
    29. 29)
      • 20. Dominguez, R., Conejo, A.J., Carrion, M.: ‘Toward fully renewable electric energy systems’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 316326.
    30. 30)
      • 31. Ahmadi, A., Masouleh, M.S., Janghorbani, M., et al: ‘Short term multi-objective hydrothermal scheduling’, Electr. Power Syst. Res., 2015, 121, pp. 357367.
    31. 31)
      • 24. Sánchez-Martin, P., Ramos, A.: ‘Modeling transmission ohmic losses in a stochastic bulk production cost model’, Instituto de Investigación Tecnológica, Universidad Pontificia Comillas, Madrid, 1997.
    32. 32)
      • 29. Aghaei, J., Akbari, M.A., Roosta, A., et al: ‘Multiobjective generation expansion planning considering power system adequacy’, Electr. Power Syst. Res., 2013, 102, pp. 819.
    33. 33)
      • 21. Zhang, H., Vittal, V., Heydt, G.T., et al: ‘A mixed-integer linear programming approach for multi-stage security-constrained transmission expansion planning’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 11251133.
    34. 34)
      • 5. Aghaei, J., Amjady, N., Baharvandi, A., et al: ‘Generation and transmission expansion planning: MILP-based probabilistic model’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 15921601.
    35. 35)
      • 32. The MathWorks Inc.: ‘Matlab programming’, 2015. Available at: http://www.mathworks.com.
    36. 36)
      • 37. I. E. Agency: ‘Energy technology perspectives 2010–scenarios and strategies to 20’, 2010. Available at: http://www.iea.org.
    37. 37)
      • 14. Jenabi, M., Fatemi Ghomi, S.M.T., Smeers, Y.: ‘Bi-level game approaches for coordination of generation and transmission expansion planning within a market environment’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 26392650.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0976
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0976
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address