access icon free Improved calculation model for swing angle of suspension insulator string

In modern power systems, increasing faults of overhead transmission lines are caused by wind swing discharge especially in weather-sensitive regions such as coastal hurricane-prone areas. Since the vast majority of wind swing discharge accidents occur at the working voltage and existing models established for the suspension insulator wind swing discharge are not adequate to analyse all cases, an improved model under wind with arbitrary directions is proposed in this paper. Comprehensive factors are taken into consideration including exposure factor of wind pressure under different landforms and different elevations, wind pressure asymmetric factor, iced conductors, the coupling effect of conductors to insulators, the shielding wake flow effect of bundled conductor, the fluctuating wind amplification effect, mechanical oscillating of insulators, etc. IEEE model and design manual model are chosen as comparisons with the simulation results of ANSYS. Test results show that the improved model proposed in this paper coincides with ANSYS results better than the other two models almost in all the working conditions considering different spans and altitude differences. The results demonstrate that the improved model can make contribution to the economical and reasonable design of towers as well as early warning of wind swing discharge of suspension insulators.

Inspec keywords: power system faults; flashover; insulators; power overhead lines; overhead line conductors

Other keywords: wind swing discharge accidents; electric engineering; bundled conductor shielding wake flow effect; conductors to insulator coupling effect; wind amplification effect; insulator mechanical oscillating; power system; exposure factor; IEEE recommended model; wind swing discharge; overhead transmission line fault; weather-sensitive regions; high voltage transmission line design manual; suspension insulator string swing angle; jumpers flashover; iced conductors; wind pressure asymmetric factor

Subjects: Power line supports, insulators and connectors; Overhead power lines

References

    1. 1)
      • 25. IEEE Standard PC62.82.2/D3: ‘IEEE draft guide for the application of insulation coordination’. December 2015.
    2. 2)
      • 26. Lihong, L., Yi, H., Jinglu, L., et al: ‘Study on windage yaw flashover of transmission line’, High Volt. Eng., 2006, 32, (4), pp. 1921.
    3. 3)
      • 2. Loredo-Souza, A.M., Davebport, A.G.: ‘The effects of high winds on transmission lines’, J. Wind Eng. Ind. Aerodyn., 1998, 74, (98), pp. 987994.
    4. 4)
      • 30. Steven, M.K.: ‘Fundamentals of statistical processing, volume I: estimation theory’ (Prentice Hall PTR, 1993), pp. 254260.
    5. 5)
      • 10. Volpe, H.W.: ‘Bonneville power administration study of wind effects on conductors for span factors’, IEEE Trans. Power Deliv., 1992, 7, (3), pp. 13871395.
    6. 6)
      • 29. Jun, L., Dingyou, J., Xu, W., et al: ‘The comparison of conductor stress calculation methods for overhead line under extreme weather conditions’. 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Kowloon, December 2013, pp. 16.
    7. 7)
      • 19. Xi, W., Wenjuan, L., Guohui, S., et al: ‘A wind tunnel study on aerodynamic characteristics of iced conductor’, Acta Aerodyn. Sin., 2011, 29, (5), pp. 573579.
    8. 8)
      • 17. Guiwei, S., Xuan, M., Yanwu, D., et al: ‘Simulation analysis of the equivalent wind loads on the transmission conductor two hanging points’, High Volt. Eng., 2012, 38, (2), pp. 476482.
    9. 9)
      • 16. Deyi, K., Li, L., Xiaohong, L., et al: ‘Finite element analysis of dynamic windage angle of suspended insulator strings’, Electr. Power Constr., 2008, 29, (9), pp. 59.
    10. 10)
      • 3. Gupta, S., Wipf, T., Fanous, F.: ‘Structural failure analysis of 345 kV transmission line’, IEEE Trans. Power Deliv., 1994, 9, (2), pp. 894903.
    11. 11)
      • 24. Xiaofu, X., Shijie, W., Jian, W.: ‘An online early-warning method for wind swing discharge of the conductor toward the tangent tower and jumper toward the strain tower’, IEEE Trans. Power Deliv., 2015, 30, (1), pp. 114121.
    12. 12)
      • 23. Clair, J.G.S.: ‘Clearance calculations of conductors to buildings’, IEEE Trans. Power Deliv., 1997, 12, (2), pp. 979984.
    13. 13)
      • 11. GB50545: ‘Code for design of 110 kV–750 kV overhead transmission line’, 2010.
    14. 14)
      • 13. Landers, P.G.: ‘EPRI-sponsored transmission line wind loading research’, IEEE Trans. Power Appar. Syst., 1982, 101, (8), pp. 24602466.
    15. 15)
      • 18. Zhengzhi, X., Zhitao, Y., Zhengliang, L., et al: ‘Wind tunnel and aerodynamic characteristics tests for ice-covering of transmission line adopting 8-bundled conductor’, Power Syst. Technol., 2009, 33, (5), pp. 9094.
    16. 16)
      • 4. Jianwei, W., Lilien, J.L.: ‘Overhead electrical transmission line galloping: a full multi-span 3-DOFmodel, some applications and design recommendation’, IEEE Trans. Power Deliv., 1998, 13, (3), pp. 909916.
    17. 17)
      • 1. Claren, R., Diana, G.: ‘Mathematical analysis of transmission line vibration’, IEEE Trans. Power Appar. Syst., 1969, 88, (12), pp. 17411771.
    18. 18)
      • 5. Qu, W.L., Chen, Z.H., Xu, Y.L.: ‘Dynamic analysis of wind-excited truss tower with friction dampers’, Comput. Struct., 2001, 79, (01), pp. 28172831.
    19. 19)
      • 14. Chay, M.T., Albermani, F., Hawes, H.: ‘Wind load on transmission line structure simulated downbursts’. World Congress on Asset Management, Gold Coast, Australia, 2006.
    20. 20)
      • 27. Yanling, Z.: ‘Research on the calculation model of high voltage transmission line insulator strings’. MS thesis, Taiyuan University of Technology, 2012.
    21. 21)
      • 7. Li, L., Linhai, X., Xianguo, L., et al: ‘Windage Yaw calculation method of UHV insulator strings’, High Volt. Eng., 2013, 57, (1), pp. 6271.
    22. 22)
      • 28. GB50009: ‘Load code for the design of building structures’. 2012.
    23. 23)
      • 15. Xiaodong, X., Gang, W.: ‘Research on wind pressure asymmetric factor’, Electr. Power Constr., 2007, 28, (7), pp. 14.
    24. 24)
      • 8. Hileman, A.R.: ‘Weather and its effect on air insulation specifications’, IEEE Trans. Power Appar. Syst., 1984, PAS-103, (10), pp. 31043116.
    25. 25)
      • 12. Diansheng, Z.: ‘Design manual of high voltage transmission lines for electric engineering’ (China Electric Power Press, 2003, 2nd edn.).
    26. 26)
      • 21. Shengxue, W., Guangning, W., Jianbin, F., et al: ‘Study on flashover of suspension insulator string caused by windage yaw in 500 kV transmission lines’, Power Syst. Technol., 2008, 32, (9), pp. 6569.
    27. 27)
      • 20. Bo, Y., Xuesong, L., Wei, L., et al: ‘Numerical study on dynamic swing of suspension insulator string in overhead transmission line under wind load’, IEEE Trans. Power Deliv., 2009, 25, (1), pp. 248259.
    28. 28)
      • 6. Annestrand, S., Bossuyt, E.F., Reppen, N.D.: ‘Insulation performance analysis of a 500 kV transmission line design’, IEEE Trans. Power Appar. Syst., 1970, PAS-89, (3), pp. 429437.
    29. 29)
      • 9. Phillips, T.A., Robertson, L.M., Rohlfs, A.F., et al: ‘Influence of air density on electrical strength of transmission line insulation’, IEEE Trans. Power Appar. Syst., 1967, PAS-86, (8), pp. 948961.
    30. 30)
      • 22. Rikh, V.N.: ‘Conductor spacings in transmission lines and effect of long spans with steep slopes in hilly terrain’, IE (I) J., 2004, 85, (5), pp. 816.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0904
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0904
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading