http://iet.metastore.ingenta.com
1887

Power quality improvement using DSTATCOM with affine projection algorithm

Power quality improvement using DSTATCOM with affine projection algorithm

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A distribution static compensator (DSTATCOM) is implemented at distribution level for overcoming several power quality problems commonly encountered today. Some of these problems considered here deal with issues of harmonics, unbalancing of loads, meeting reactive power demand of the load for improving power factor to unity and regulating the voltage. A new technique is proposed based on affine projection control algorithm and its design and implementation on a shunt compensator are discussed. The proposed control approach estimates the fundamental weight values of load currents. These weights are utilised to compute the magnitude and phase of reference grid currents and consequently gating pulses for three-phase voltage source converter (VSC). The control approach is based on the convergence of the weighted values and is independent of the property of the input signal. This control approach has characteristic of updating weights on the basis of multiple, delayed input signal vectors. Fast convergence of active and reactive weighted values is added advantage of the proposed control approach with the above-mentioned characteristics. A working prototype of the DSTATCOM is implemented using three-phase VSC and digital signal processor (DSP) (dSPACE 1104). The affine projection control approach is developed in MATLAB/SIMULINK and verified on a prototype using DSP.

References

    1. 1)
      • B. Singh , A. Chandra , K.Al Haddad . (2015)
        1. Singh, B., Chandra, A., Haddad, K.Al: ‘Power quality: problems and mitigation techniques’ (John Wiley and Sons, UK, 2015).
        .
    2. 2)
      • M.A. Bollen . (2000)
        2. Bollen, M.A.: ‘Understanding power quality problems: voltage sags and interruptions’ (IEEE Press, Piscataway, USA, 2000).
        .
    3. 3)
      • A. Ghosh , G. Ledwich . (2009)
        3. Ghosh, A., Ledwich, G.: ‘Power quality enhancement using custom power devices’ (Springer International Edition, Delhi, 2009).
        .
    4. 4)
      • T.D.C. Busarello , J.A. Pomilio , M.G. Simões .
        4. Busarello, T.D.C., Pomilio, J.A., Simões, M.G.: ‘Passive filter aided by shunt compensators based on the conservative power theory’, IEEE Trans. Ind. Appl., 2016, 52, (4), pp. 33403347.
        . IEEE Trans. Ind. Appl. , 4 , 3340 - 3347
    5. 5)
      • H. Akagi , E.H. Watanabe , M. Aredes . (2007)
        5. Akagi, H., Watanabe, E.H., Aredes, M.: ‘Instantaneous power theory and applications to power conditioning’ (John Wiley & Sons, New Jersey, USA, 2007).
        .
    6. 6)
      • H. Myneni , G. Siva Kumar , D. Sreenivasarao .
        6. Myneni, H., Siva Kumar, G., Sreenivasarao, D.: ‘Dynamic DC voltage regulation of split-capacitor DSTATCOM for power quality improvement’, IET Gener. Trans. Distrib., 2017, 11, (17), pp. 43734383.
        . IET Gener. Trans. Distrib. , 17 , 4373 - 4383
    7. 7)
      • H.L. Jou .
        7. Jou, H.L.: ‘Performance comparison of the three-phase active-power-filter algorithms’, IEE Proc. Gener. Trans. Distrib., 1995, 142, (6), pp. 646652.
        . IEE Proc. Gener. Trans. Distrib. , 6 , 646 - 652
    8. 8)
      • F. Gonzalez-Espin , E. Figueres , G. Garcera .
        8. Gonzalez-Espin, F., Figueres, E., Garcera, G.: ‘An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid’, IEEE Trans. Ind. Electron., 2012, 59, (6), pp. 27182731.
        . IEEE Trans. Ind. Electron. , 6 , 2718 - 2731
    9. 9)
      • R.S. Herrera , P. Salmerón , H. Kim .
        9. Herrera, R.S., Salmerón, P., Kim, H.: ‘Instantaneous reactive power theory applied to active power filter compensation: different approaches, assessment, and experimental results’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 184196.
        . IEEE Trans. Ind. Electron. , 1 , 184 - 196
    10. 10)
      • M. Qasim , P. Kanjiya , V. Khadkikar .
        10. Qasim, M., Kanjiya, P., Khadkikar, V.: ‘Optimal current harmonic extractor based on unified ADALINEs for shunt active power filters’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 63836393.
        . IEEE Trans. Power Electron. , 12 , 6383 - 6393
    11. 11)
      • M.T. Ahmad , N. Kumar , B. Singh .
        11. Ahmad, M.T., Kumar, N., Singh, B.: ‘AVSF-based control algorithm of DSTATCOM for distribution system’, IET Gener. Trans. Distrib., 2017, 11, (13), pp. 33893396.
        . IET Gener. Trans. Distrib. , 13 , 3389 - 3396
    12. 12)
      • I. Sefa , S. Ozdemir , H. Komurcugil .
        12. Sefa, I., Ozdemir, S., Komurcugil, H., et al: ‘Comparative study on Lyapunov-function-based control schemes for single-phase grid-connected voltage-source inverter with LCL filter’, IET Renew. Power Gener., 2017, 11, (11), pp. 14731482.
        . IET Renew. Power Gener. , 11 , 1473 - 1482
    13. 13)
      • R. Panigrahi , B. Subudhi , P.C. Panda .
        13. Panigrahi, R., Subudhi, B., Panda, P.C.: ‘A robust LQG servo control strategy of shunt-active power filter for power quality enhancement’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 28602869.
        . IEEE Trans. Power Electron. , 4 , 2860 - 2869
    14. 14)
      • C. Xie , X. Zhao , M. Savaghebi .
        14. Xie, C., Zhao, X., Savaghebi, M., et al: ‘Multirate fractional-order repetitive control of shunt active power filter suitable for microgrid applications’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (2), pp. 809819.
        . IEEE J. Emerg. Sel. Top. Power Electron. , 2 , 809 - 819
    15. 15)
      • B. Singh , J. Solanki .
        15. Singh, B., Solanki, J.: ‘A comparison of control algorithms for DSTATCOM’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 27382745.
        . IEEE Trans. Ind. Electron. , 7 , 2738 - 2745
    16. 16)
      • Q. Zhao , Y. Ye , G. Xu .
        16. Zhao, Q., Ye, Y., Xu, G., et al: ‘Improved repetitive control scheme for grid-connected inverter with frequency adaptation’, IET Power Electron., 2016, 9, (5), pp. 883890.
        . IET Power Electron. , 5 , 883 - 890
    17. 17)
      • K. Venkatraman , M.P. Selvan , S. Moorthi .
        17. Venkatraman, K., Selvan, M.P., Moorthi, S.: ‘Predictive current control of distribution static compensator for load compensation in distribution system’, IET Gener. Trans. Distrib., 2016, 10, (10), pp. 24102423.
        . IET Gener. Trans. Distrib. , 10 , 2410 - 2423
    18. 18)
      • M. Badoni , A. Singh , B. Singh .
        18. Badoni, M., Singh, A., Singh, B.: ‘Comparative performance of wiener filter and adaptive least mean square-based control for power quality improvement’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 30283037.
        . IEEE Trans. Ind. Electron. , 5 , 3028 - 3037
    19. 19)
      • P. Chittora , A. Singh , M. Singh .
        19. Chittora, P., Singh, A., Singh, M.: ‘Gauss–newton-based fast and simple recursive algorithm for compensation using shunt active power filter’, IET Gener. Trans. Distrib., 2017, 11, (6), pp. 15211530.
        . IET Gener. Trans. Distrib. , 6 , 1521 - 1530
    20. 20)
      • S.P. Gawande , M.R. Ramteke , N. Pande .
        20. Gawande, S.P., Ramteke, M.R., Pande, N.: ‘Improved equal current approach for reference current generation in shunt applications under unbalanced and distorted source and load conditions’, IET Gener. Trans. Distrib., 2016, 10, (4), pp. 9951005.
        . IET Gener. Trans. Distrib. , 4 , 995 - 1005
    21. 21)
      • L.H. Tey , P.L. So , Y.C. Chu .
        21. Tey, L.H., So, P.L., Chu, Y.C.: ‘Improvement of power quality using adaptive shunt active filter’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 15581568.
        . IEEE Trans. Power Deliv. , 2 , 1558 - 1568
    22. 22)
      • M. Badoni , A. Singh , B. Singh .
        22. Badoni, M., Singh, A., Singh, B.: ‘Adaptive recursive inverse based control algorithm for shunt active power filter’, IET Power Electron., 2016, 9, (5), pp. 10531064.
        . IET Power Electron. , 5 , 1053 - 1064
    23. 23)
      • X. Mu , J. Wang , W. Wu .
        23. Mu, X., Wang, J., Wu, W., et al: ‘A modified multi-frequency passivity-based control for shunt active power filter with model-parameter-adaptive capability’, IEEE Trans. Ind. Electron., 2018, 65, (1), pp. 760769.
        . IEEE Trans. Ind. Electron. , 1 , 760 - 769
    24. 24)
      • J. Jayachandran , R.M. Sachithanandam .
        24. Jayachandran, J., Sachithanandam, R.M.: ‘Neural network-based control algorithm for DSTATCOM under nonideal source voltage and varying load conditions’, Can. J. Electr. Comput. Eng., 2015, 38, (4), pp. 307317.
        . Can. J. Electr. Comput. Eng. , 4 , 307 - 317
    25. 25)
      • Z.X. Zou , K. Zhou , Z. Wang .
        25. Zou, Z.X., Zhou, K., Wang, Z., et al: ‘Frequency-adaptive fractional-order repetitive control of shunt active power filters’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 16591668.
        . IEEE Trans. Ind. Electron. , 3 , 1659 - 1668
    26. 26)
      • M. Srinivas , I. Hussain , B. Singh .
        26. Srinivas, M., Hussain, I., Singh, B.: ‘Combined LMS–LMF-based control algorithm of DSTATCOM for power quality enhancement in distribution system’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 41604168.
        . IEEE Trans. Ind. Electron. , 7 , 4160 - 4168
    27. 27)
      • G. Pathak , B. Singh , B.K. Panigrahi .
        27. Pathak, G., Singh, B., Panigrahi, B.K.: ‘Control of wind-diesel microgrid using affine projection-like algorithm’, IEEE Trans. Ind. Inf., 2016, 12, (2), pp. 524531.
        . IEEE Trans. Ind. Inf. , 2 , 524 - 531
    28. 28)
      • M. Badoni , B. Singh , A. Singh .
        28. Badoni, M., Singh, B., Singh, A.: ‘Implementation of echo-state network-based control for power quality improvement’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 55765584.
        . IEEE Trans. Ind. Electron. , 7 , 5576 - 5584
    29. 29)
      • R. Arablouei , K. Doğançay .
        29. Arablouei, R., Doğançay, K.: ‘Affine projection algorithm with selective projections’, Signal Process., 2012, 92, (9), pp. 22532263.
        . Signal Process. , 9 , 2253 - 2263
    30. 30)
      • J. Song , P. Park .
        30. Song, J., Park, P.: ‘An optimal variable step-size affine projection algorithm for the modified filtered-x active noise control’, Signal Process., 2015, 114, pp. 100111.
        . Signal Process. , 100 - 111
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0841
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0841
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address