Model predictive control approach for frequency and voltage control of standalone micro-grid

Model predictive control approach for frequency and voltage control of standalone micro-grid

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The frequency and voltage control of a standalone micro-grid with synchronous generator-based distributed generator and electronically interfaced generator is discussed. A centralised linear model predictive controller is employed. The controller design is based on the state space model of the micro-grid. To decrease the number of optimising variables and calculation time of optimal control trajectory, the design of the controller is realised with the help of orthonormal Laguerre polynomials. The numerical instabilities that arise during implementation and the possible ways to overcome them are discussed. The impact of different generator constraints on the controller operation is discussed. Formulation of the micro-grid model and identifying the appropriate inputs and outputs to the controller is discussed in detail with the help of an eight bus micro-grid.


    1. 1)
      • 1. Olivares, D.E., Sani, A.M., Etemadi, A.H., et al: ‘Trends in microgrid control’, IEEE Trans. Smart Grid., 2014, 5, (4), pp. 19051919.
    2. 2)
      • 2. Han, H., Xiaochao, H., Jian, Y., et al: ‘Review of power sharing control strategies for islanding operation of AC microgrids’, IEEE Trans. Smart Grid., 2016, 7, (1), pp. 200215.
    3. 3)
      • 3. Katiraei, F., Iravani, M.R., Lehn, P.W.: ‘Micro-grid autonomous operation during and subsequent to islanding process’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 248257.
    4. 4)
      • 4. Yu, K., Ai, Q., Wang, S., et al: ‘Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model’, IEEE Trans. Smart Grid., 2016, 7, (2), pp. 695705.
    5. 5)
      • 5. Katiraei, F., Iravani, M.R.: ‘Power management strategies for a microgrid with multiple distributed generation units’, IEEE Trans. Power Syst., 2006, 21, (4), pp. 18211831.
    6. 6)
      • 6. Katiraei, F., Iravani, M., Lehn, P.: ‘Small-signal dynamic model of a micro-grid including conventional and electronically interfaced distributed resources’, IET Gener. Trans. Distr., 2007, 1, (3), pp. 369378.
    7. 7)
      • 7. Kundur, P.: ‘Power system stability and control’ (McCraw-Hill, New York, 1994).
    8. 8)
      • 8. Cortes, P., Kazmierkowski, M.P., Kennel, R.M., et al: ‘Predictive control in power electronics and drives’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43124324.
    9. 9)
      • 9. Rodríguez, J., Kazmierkowski, M.P., Espinoza, J.R., et al: ‘State of the art of finite control set model predictive control in power electronics’, IEEE Trans. Ind. Inf., 2013, 9, (2), pp. 10031016.
    10. 10)
      • 10. Ersdal, A., Imsland, L., Uhlen, K.: ‘Model predictive load-frequency control’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 777785.
    11. 11)
      • 11. Ersdal, A.M., Cecilio, I.M., Fabozzi, D., et al: ‘Applying model predictive control to power system frequency control’. Proc. 4th IEEE/PES Innovative Smart Grid Technologies, Europe, October 2013, pp. 15.
    12. 12)
      • 12. Errouissi, R., Muyeen, S.M., Al-Durra, A., et al: ‘Experimental validation of robust continuous nonlinear model predictive control based grid-interlinked photovoltaic inverter’, IEEE Trans. Ind. Electron., 2015, 63, (7), pp. 44954505.
    13. 13)
      • 13. Hu, J., Zhu, J., Dorrell, D.G.: ‘Model-predictive direct power control of doubly-fed induction generators under unbalanced grid voltage conditions in wind energy applications’, IET Renew. Power Gener., 2014, 8, (6), pp. 687695.
    14. 14)
      • 14. Hu, J., Zhu, J., Dorrell, D.G.: ‘Model predictive control of grid connected inverters for PV systems with flexible power regulation and switching frequency reduction’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 587594.
    15. 15)
      • 15. Shadmand, M., Balog, R., Abu-Rub, H.: ‘Model predictive control of PV sources in a smart dc distribution system: maximum power point tracking and droop control’, IEEE Trans. Energy Convers., 2014, 29, (4), pp. 913921.
    16. 16)
      • 16. Hu, J., Zhu, J., Dorrell, D.G.: ‘Model predictive control of inverters for both islanded and grid-connected operations in renewable power generation’, IET Renew. Power Gener., 2014, 8, (3), pp. 240248.
    17. 17)
      • 17. Tavakoli, A., Negnevitsky, M., Muttaqi, K.M.: ‘A decentralized model predictive control for operation of multiple distributed generators in an islanded mode’, IEEE Trans. Ind. Appl., 2017, 53, (2), pp. 14661475.
    18. 18)
      • 18. Schauder, C., Mehta, H.: ‘Vector analysis and control of advanced static VAR compensators’, Proc. Inst. Elect. Eng. Gen. Transm. Dist., 1993, 140, (4), pp. 299306.
    19. 19)
      • 19. Chung, S.K.: ‘A phase tracking system for three phase utility interface inverters’, IEEE Trans. Power Electron., 2000, 15, (3), pp. 431438.
    20. 20)
      • 20. Barra, K., Rahem, D.: ‘Predictive direct power control for photovoltaic grid connected system: an approach based on multilevel converters’, Energy Convers. Manage., 2014, 78, pp. 825834.
    21. 21)
      • 21. Wang, L.: ‘Model predictive control system design and implementation using MATLAB’ (Springer-Verlag, Berlin, Germany, 2009).
    22. 22)
      • 22. Ogata, K.: ‘Modern control engineering’ (Upper Saddle River, Prentice Hall, 2009).
    23. 23)
      • 23. Yang, F., Sun, Q., Han, Q., et al: ‘Cooperative model predictive control for distributed photovoltaic power generation systems’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (2), pp. 414420.
    24. 24)
      • 24. Tibola, J.R., Pinheiro, H., De Camargo, R.F.: ‘Closed loop selective harmonic elimination applied to a grid connected PWM converter with LCL filter’. Proc. Brazilian Power Electronics Conf., Praiamar, September 2011, pp. 746752.
    25. 25)
      • 25. Mayne, D.Q., Rawlings, J.B., Rao, C.V., et al: ‘Constrained model predictive control: stability and optimality’, Automatica, 2000, 36, (6), pp. 789814.

Related content

This is a required field
Please enter a valid email address