Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free SPSA-based data-driven control strategy for load frequency control of power systems

To meet the demands of the modern power system for satisfactory operation and control, here, a novel data-driven control strategy is proposed to solve the load frequency control (LFC) problems of power systems, with complete convergence analysis. This data-based LFC approach is designed based on the simultaneous perturbation stochastic approximation (SPSA) method and neural network ensemble. The data-based controller is constructed using a function approximator, which is fixed as a neural network. Being the control parameters, the connection weights of the neural network controller are updated at each iteration step. In order to improve the overall control accuracy and get more stable control performance, the idea of neural network ensemble is introduced for the data-based controller structure design. The proposed data-based controller takes past and current system information as input and generates a control signal that can affect future system performance as output, and during the whole process, it is not necessary to build mathematical model for the controlled plant. A one-area LFC problem with system parametric uncertainties as well as a typical two-area LFC problem have been introduced for simulation tests, and the feasibility and effectiveness of this newly proposed data-based LFC strategy is well revealed through simulation results.

References

    1. 1)
      • 30. Chua, W.K., Fong, S.M.: ‘Computer-aided load frequency controller design’. School of Electricaland Electronic Engineering, Nanyang Technological University, 1993.
    2. 2)
      • 33. Vrdoljak, K., Peric, N., Petrovic, I.: ‘Sliding mode based load-frequency control in power systems’, Electr. Power Syst. Res., 2010, 80, (5), pp. 514527.
    3. 3)
      • 8. Singh, V.P., Kishor, N., Samuel, P.: ‘Distributed multi-agent system-based load frequency control for multi-area power system in smart grid’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 51515160.
    4. 4)
      • 15. Fliess, M., Join, C.: ‘Model-free control’, Int. J. Control, 2013, 86, (12), pp. 22282252.
    5. 5)
      • 26. Dong, N., Wu, A.G., Chen, Z.Q.: ‘Discrete non-linear adaptive data driven control based upon simultaneous perturbation stochastic approximation’, Nonlinear Dyn., 2013, 72, (4), pp. 883894.
    6. 6)
      • 22. Maeda, Y.: ‘Real-time control and learning using neuro-controller via simultaneous perturbation for flexible arm system’. Proc. of the American Control Conf., Anchorage, AK, May 2002, pp. 810.
    7. 7)
      • 32. Fosha, C.E., Elgerd, O.I.: ‘The megawatt-frequency control problem: a new approach via optimal control theory’, IEEE Trans. Power Appar. Syst., 1970, PAS-89, (4), pp. 563577.
    8. 8)
      • 23. Gerencser, L., Kozmann, G., Vago, Z., et al: ‘The use of the SPSA method in ECG analysis’, IEEE Trans. Biomed. Eng., 2002, 49, (10), pp. 10941101.
    9. 9)
      • 2. Wen, S.P., Yu, X.H., Zeng, Z.G., et al: ‘Event-triggering load frequency control for multi-area power systems with communication delays’, IEEE Trans. Ind. Electron., 2016, 63, (2), pp. 13081–317.
    10. 10)
      • 11. Mohamed, T.H., Morel, J., Bevrani, H., et al: ‘Decentralized model predictive based load-frequency control in an interconnected power system concerning wind turbines’, IEEJ Trans. Electr. Electron. Eng., 2012, 7, (5), pp. 487494.
    11. 11)
      • 14. Wang, H., Shi, P., Lim, C., et al: ‘Event-triggered control for networked Markovian jump systems’, Int. J. Robust Nonlinear Control, 2015, 25, (17), pp. 34223438.
    12. 12)
      • 13. Formentin, S., Corno, M., Savaresi, S.M., et al: ‘Direct data-driven control of linear time-delay systems’, Asian J. Control, 2012, 14, (14), pp. 652663.
    13. 13)
      • 3. Sargolzaei, A., Yen, K.K., Abdelghani, M.N.: ‘Preventing time-delay switch attack on load frequency control in distributed power systems’, IEEE Trans. Smart Grid, 2016, 7, (2), pp. 11761185.
    14. 14)
      • 28. Khalil, A., Wang, J.H., Mohamed, O.: ‘Robust stabilization of load frequency control system under networked environment’, Int. J. Autom. Comput., 2017, 14, (1), pp. 93C105.
    15. 15)
      • 6. Ma, M.M., Liu, X.J., Zhang, C.Y.: ‘LFC for multi-area interconnected power system concerning wind turbines based on DMPC’, IET. Gener. Transm. Distrib., 2017, 11, (10), pp. 26892696.
    16. 16)
      • 9. Singh, V.P., Kishor, N., Samuel, P.: ‘Load frequency control with communication topology changes in smart grid’, IEEE Trans. Ind. Inf., 2016, 12, (5), pp. 19431952.
    17. 17)
      • 4. Ersdal, A.M., Imsland, L., Uhlen, K.: ‘Model predictive load-frequency control’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 777785.
    18. 18)
      • 20. Azim, M.A., Aung, Z., Xiao, W., et al: ‘SPSA-NC: simultaneous perturbation stochastic approximation localization based on neighbor confidence’, Wirel. Commun. Mob. Comput., 2015, 16, (12), pp. 15701587.
    19. 19)
      • 19. Spall, J.C.: ‘Feedback and weighting mechanisms for improving Jacobian estimates in the adaptive simultaneous perturbation algorithm’, IEEE Trans. Autom. Control, 2009, 54, (6), pp. 12161229.
    20. 20)
      • 21. Li, L., Jafarpour, B., Mohammad-Khaninezhad, M.R.: ‘A simultaneous perturbation stochastic approximation algorithm for coupled well placement and control optimization under geologic uncertainty’, Comput. Geosci., 2013, 17, (1), PP. pp. 167188.
    21. 21)
      • 25. Spall, J.C., Cristion, J.A.: ‘Model-free control of general discrete-time systems’. Proc. of the 32nd IEEE Conf. on Decision and Control, San Antonio, Texas, USA, December 1993, pp. 1517.
    22. 22)
      • 5. Rahmani, M., Sadati, N.: ‘Hierarchical optimal robust load-frequency control for power systems’, IET. Gener. Transm. Distrib., 2012, 6, (4), pp. 303312.
    23. 23)
      • 10. Bevrani, H., Daneshmand, P.R.: ‘Fuzzy logic-based load-frequency control concerning high penetration of wind turbines’, IEEE Syst. J., 2012, 6, (1), pp. 173180.
    24. 24)
      • 24. Maryak, J.L., Spall, J.C.: ‘Simultaneous perturbation optimization for efficient image restoration’, IEEE Trans. Aerosp. Electron. Syst., 2005, 41, (1), pp. 356361.
    25. 25)
      • 29. Mi, Y., Wu, X., Chu, Y., et al: ‘Load frequency control for one area power systems based on sliding mode control’, Control Decis., 2012, 27, (12), pp. 18811889.
    26. 26)
      • 18. Frey, J: ‘Introduction to stochastic search and optimization: estimation, simulation, and control’, IEEE Control Syst., 2005, 25, (3), pp. 101102.
    27. 27)
      • 17. Wieland, J.R., Schmeiser, B.W.: ‘Stochastic gradient estimation using a single design point’. Proc. of the 2006 Winter Simulation Conf., Monterey, CA, December 2006, pp. 36.
    28. 28)
      • 7. Sonmez, S., Ayasun, S.: ‘Stability region in the parameter space of PI controller for a single-area load frequency control system with time delay’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 829830.
    29. 29)
      • 31. Sinha, N.K., Zhou, Q.J.: ‘Discrete-time approximation of multivariable continuous-time systems’, IEE Proc. D Control Theory Appl., 1983, 130, (3), pp. 103110.
    30. 30)
      • 12. Huusom, J.K., Poulsen, N.K., Jorgensen, S.B.: ‘Iterative feedback tuning of uncertain state space systems’, Braz. J. Chem. Eng., 2010, 27, (3), pp. 461472.
    31. 31)
      • 16. Spall, J.C.: ‘Multivariate stochastic approximation using a simultaneous perturbation gradient approximation’, IEEE Trans. Autom. Control, 1992, 17, (3), pp. 332341.
    32. 32)
      • 27. Gupta, M., Srivastava, S., Gupta, J.R.P.: ‘A novel controller for model with combined LFC and AVR loops of single area power system’, J. Inst. Eng. (India), Ser. B, 2016, 97, (1), pp. 2129.
    33. 33)
      • 1. Daneshfar, F.: ‘Intelligent load-frequency control in a deregulated environment: continuous-valued input, extended classifier system approach’, IET. Gener. Transm. Distrib.., 2013, 7, (6), pp. 551559.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0799
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0799
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address