Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Decentralised PEV charging coordination to absorb surplus wind energy via stochastically staggered dual-tariff schemes considering feeder-level regulations

Wind energy curtailment has increasingly concerned the electric power industry. To absorb the surplus wind energy, a decentralised programme is presented via stochastically staggered dual tariffs for the coordination of plug-in electric vehicle (PEV) chargers. The programme consists of two stages: day ahead and real time. In the day-ahead stage, two steps are performed. First, the dual-tariff schemes are identified at the transmission level based on a charging coordination integrated unit commitment (CCIUC) model. Second, they are adjusted at the feeder level via a security check and correction (SCC) algorithm to ensure bus voltages, feeder currents and losses within desired limits. The CCIUC model and SCC algorithm incorporate a novel aggregated charging load model to grasp the integrated knowledge of PEVs in reacting to dual-tariff signals in an ex ante manner, which avoids real-time iterations between PEVs and systems. In the real-time stage, the individual charging pattern is produced for cost minimisation at the charging device level by a novel local coordination model. Simulation results show that the proposed program enables: (i) enhanced efficiencies on absorbing surplus wind energy at the transmission level; (ii) well considerations on satisfying regulation requirements at the feeder level.

References

    1. 1)
      • 20. Momber, I., Wogrin, S., San Román, T.G., et al: ‘Retail pricing: a bilevel program for PEV aggregator decisions using indirect load control’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 464473.
    2. 2)
      • 27. Sortomme, E., Hindi, M.M., MacPherson, S.D.J., et al: ‘Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 198205.
    3. 3)
      • 14. Gan, L., Topcu, U., Low, S.: ‘Optimal decentralized protocol for electric vehicle charging’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 940951.
    4. 4)
      • 17. Karfopoulos, L., Panourgias, K., Hatziargyriou, D.: ‘Distributed coordination of electric vehicles providing V2G regulation services’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 28342845.
    5. 5)
      • 1. Emissions associated with electric vehicle charging: impact of electricity generation mix, charging infrastructure availability, and vehicle type’. Available at http://www.nrel.gov/docs/fy16osti/64852.pdf, accessed 18 may 2017.
    6. 6)
      • 30. QC/T 841-2010: ‘Electric vehicle conductive charge coupler’, 2010.
    7. 7)
      • 19. Liu, P., Yu, J.: ‘Identification of charging behavior characteristic for large-scale heterogeneous electric vehicle fleet’, J. Mod. Power Syst. Clean Energy, 2018, 6, (3), pp. 567581.
    8. 8)
      • 11. Deilami, S., Masoum, S., Moses, P.S., et al: ‘Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile’, IEEE Trans. Smart Grid, 2011, 2, (3), pp. 456466.
    9. 9)
      • 23. Dimitrios, P., Strbac, D.: ‘Decentralized participation of flexible demand in electricity markets – Part I: market mechanism’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 36583666.
    10. 10)
      • 6. Introductions on wind power generation in China: 2017’. Available at http://www.nea.gov.cn/2018-02/01/c_136942234.htm, accessed 15 April 2018.
    11. 11)
      • 7. Masoum, S., Deilami, S., Abu-Siada, A.: ‘Fuzzy approach for online coordination of plug-in electric vehicle charging in smart grid’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 11121121.
    12. 12)
      • 13. Mosaddek, H.K.T., Assi, C., Maier, M., et al: ‘Smart microgrids: optimal joint scheduling for electric vehicles and home appliances’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 239248.
    13. 13)
      • 9. Sundström, O., Binding, C.: ‘Flexible charging optimization for electric vehicles considering distribution grid constraints’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 2637.
    14. 14)
      • 25. Roozbehani, M., Dahleh, M., Mitter, S.K., et al: ‘Volatility of power grids under real-time pricing’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 19261939.
    15. 15)
      • 16. Xing, H., Fu, M., Lin, Z., et al: ‘Decentralized optimal scheduling for charging and discharging of plug-in electric vehicles in smart grids’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 41184126.
    16. 16)
      • 28. Liu, P., Yu, J.: ‘Charging behavior characteristic simulation of plug-in electric vehicles for demand response’. 11th Int. Conf. Control, Belfast, UK, 2016.
    17. 17)
      • 5. Li, J., Cai, F., Qiao, L., et al: ‘2015 annual review and outlook on China wind power’ (Chinese Wind Energy Association, Beijing, China, 2016).
    18. 18)
      • 10. Masoum, S., Deilami, S., Moses, P.S., et al: ‘Smart load management of plug-in electric vehicles in distribution and residential networks with charging stations for peak shaving and loss minimisation considering voltage regulation’, IET Gener. Transm. Distrib., 2010, 5, (8), pp. 877888.
    19. 19)
      • 31. Zhang, M., Zhuang, T.: ‘Analysis of the measured charging load of electric vehicle in residential area’, Power Demand Side Manage., 2012, 14, (3), pp. 4446.
    20. 20)
      • 18. Gottwalt, S., Gärttner, J., Schmeck, H., et al: ‘Modeling and valuation of residential demand flexibility for renewable energy integration’, IEEE Trans. Smart Grid, 2017, 8, (6), pp. 25652574.
    21. 21)
      • 15. Mou, Y., Xing, H., Lin, Z., et al: ‘Decentralized optimal demand-side management for PHEV charging in a smart grid’, IEEE Trans. Smart Grid, 2015, 6, (2), pp. 726735.
    22. 22)
      • 29. Wen, H., Wang, S.L.: ‘Beijing transport annual report’ (Beijing Transportation Research Center, Beijing, China, 2016).
    23. 23)
      • 22. Karfopoulos, L., Hatziargyriou, N.: ‘Distributed coordination of electric vehicles providing V2G services’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 329338.
    24. 24)
      • 3. Das, K., Thirugnanam, K., Kumar, P., et al: ‘Mathematical modeling for economic evaluation of electric vehicle to smart grid interaction’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 712721.
    25. 25)
      • 24. Dimitrios, P., Strbac, D., Mancarella, P., et al: ‘Decentralized participation of flexible demand in electricity markets – Part II: application with electric vehicles and heat pump systems’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 36673674.
    26. 26)
      • 21. Luo, C., Huang, Y., Gupta, V.: ‘Stochastic dynamic pricing for EV charging stations with renewable integration and energy storage’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 14941505.
    27. 27)
      • 12. Richardson, P., Flynn, D., Keane, A.: ‘Optimal charging of electric vehicles in low-voltage distribution systems’, IEEE Trans. Power Syst., 2012, 27, (1), pp. 268278.
    28. 28)
      • 4. Miadreza, S.K., Pierluigi, S., Desta, Z.F., et al: ‘An innovative two-level model for electric vehicle parking lots in distribution systems with renewable energy’, IEEE Trans. Smart Grid, 2018, 9, (2), pp. 15061520.
    29. 29)
      • 2. Global wind report: annual market update 2016’. Available at http://www.gwec.net/wp-content/uploads/vip/Annual-Report-with-only-Graphs.pdf, accessed 15 April 2018.
    30. 30)
      • 8. Clement-Nyns, K., Haesen, E., Driesen, J.: ‘The impact of charging plug-in hybrid electric vehicles on a residential distribution grid’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 371380.
    31. 31)
      • 26. Sarker, M., Kirschen, D.: ‘Optimal coordination and scheduling of demand response via monetary incentives’, IEEE Trans. Power Syst., 2015, 6, (3), pp. 13411351.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0780
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0780
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address