http://iet.metastore.ingenta.com
1887

Optimal allocation of BESS and MT in a microgrid

Optimal allocation of BESS and MT in a microgrid

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a two-stage planning framework of the battery energy storage system (BESS) and micro-turbine (MT) in a microgrid. In the first stage, the optimal allocation decisions are made before the actual realisation of the operational uncertainties. In the second stage, the optimal operation strategies are made for the microgrid by minimising the costs paid to the main grid, fuel cells, MTs, BESSs and controllable loads (CLs). The hot water system and interruptible load are considered as CLs. Their mathematical models are built to investigate their roles in smoothing renewable energy. In addition, efforts are made to keep the linearity of the formulated optimisation problem, and the backward scenario reduction method is adopted to further enhance the computational efficiency. The modified IEEE 33-bus radial system is used as a microgrid to verify the effectiveness of the proposed approach for both islanded and grid-connected microgrids. Sensitivity analysis has been conducted to compare the economics and robustness of the identified solutions.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0717
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0717
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address