access icon free Methodology to assess phasor measurement unit in the estimation of dynamic line rating

This paper presents a methodology to analyse the influence of both atmospheric variations in time and space and the error in synchrophasor measurements to estimate conductor temperature along an overhead line. In this methodology, expressions to compute the error propagation in the computing of temperature because of measurement errors and load variations are proposed. The analysis begins by computing overhead line's thermal and mechanical parameters using simulations of load and atmospheric conditions. Having computed these parameters, values of resistance, inductance and capacitance of the overhead line modelled by means of a equivalent circuit are estimated, with the purpose of quantifying the sensibility of electrical parameters to changes in conductor temperature. Additionally, this analysis allows the identification of the temperature in each span along OHLs. Subsequently, the average conductor temperature is estimated using simulations of synchrophasors through the relationship between resistivity and temperature. This estimated temperature is compared with the temperature computed using atmospheric conditions to obtain the maximum error. This error is contrasted with the acceptable error margins. Thus, during the planning stage, this methodology can be used to assess PMU as a method of computing conductor temperature.

Inspec keywords: equivalent circuits; interpolation; phasor measurement; power system parameter estimation; measurement errors; power overhead lines

Other keywords: atmospheric conditions; overhead line; synchrophasor measurements; planning stage; weather stations; atmospheric variations; electrical parameter sensibility; temperature identification; load variations; dynamic line rating estimation; error propagation; phasor measurement unit assessment; measurement errors; OHL thermal parameters; conductor temperature estimation; π equivalent circuit; mechanical parameters; error margins

Subjects: Interpolation and function approximation (numerical analysis); Power system measurement and metering; Overhead power lines

References

    1. 1)
      • 17. Mai, R., Fu, L., HaiBo, X.: ‘Dynamic line rating estimator with synchronized phasor measurement’. 2011 Int. Conf. Advanced Power System Automation and Protection, vol. 2, Beijing, China, October 2011, pp. 940945. Available at http://ieeexplore.ieee.org/document/6180545/.
    2. 2)
      • 7. International des grands réseaux électriques. Joint working group B2-C1 (19), C.: ‘Increasing capacity of overhead transmission lines: needs and Solutions’ (CIGRE, Paris, France, 2010). Available at http://www.e-cigre.org/.
    3. 3)
      • 15. Cecchi, V., Leger, A. S., Miu, K., et al: ‘Incorporating temperature variations into transmission-line models’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 21892196.
    4. 4)
      • 5. Papailiou, K.O.: ‘Overhead lines: a Cigre green book’ (Cigre, Paris, France, 2014).
    5. 5)
      • 10. Du, Y., Liao, Y.: ‘On-line estimation of transmission line parameters, temperature and sag using PMU measurements’, Electr. Power Syst. Res. , 2012, 93, pp. 3945.
    6. 6)
      • 18. Stephen, R., Douglas, D., Mirosevic, G., et al: ‘Thermal behaviour of overhead conductors’ (CIGRE, Paris, France, 2002). Available at http://www.e-cigre.org/.
    7. 7)
      • 27. Zhao, J., Tan, J., Wu, L., et al: ‘Impact of measurement error on synchrophasor applications’. 2015. Available at https://certs.lbl.gov/publications/impact-measurement-error.
    8. 8)
      • 13. Frank, S., Sexauer, J., Mohagheghi, S.: ‘Temperature-dependent power flow’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 40074018.
    9. 9)
      • 8. Fernandez, E., Albizu, I., Bedialauneta, M.T., et al: ‘Review of dynamic line rating systems for wind power integration’, Renew. Sustain. Energy Rev., 2016, 53, pp. 8092.
    10. 10)
      • 28. Carlini, E.M., Pisani, C., Vaccaro, A., et al: ‘Dynamic line rating monitoring in WAMS: challenges and practical solutions’. 2015 IEEE 1st Int. Forum on Research and Technologies for Society and Industry, RTSI 2015 – Proc., Turin, Italy, September 2015, pp. 359364.
    11. 11)
      • 21. CIGRE TF B2.12.3: ‘Sag-tension calculation methods for overhead lines’. Technical Brochure 324 (CIGRE, Paris, France, 2007), p. 91.
    12. 12)
      • 1. Winter, W., Elkington, K., Bareux, G., et al: ‘Pushing the limits: Europe's new grid: innovative tools to combat transmission bottlenecks and reduced inertia’, IEEE Power Energy Mag., 2015, 13, (1), pp. 6074. Available at http://ieeexplore.ieee.org/document/6998972/.
    13. 13)
      • 24. CIGRE WG B2.12: ‘Guide for selection of weather parameters for bare overhead conductor ratings’. Technical Brochure 299 (CIGRE, Paris, France, 2006).
    14. 14)
      • 16. Matus, M., Saez, D., Favley, M., et al: ‘Identification of critical spans for monitoring systems in dynamic thermal rating’, IEEE Trans. Power Deliv., 2012, 27, (2), pp. 10021009. Available at http://ieeexplore.ieee.org/document/6163401/.
    15. 15)
      • 22. Tleis, N.: ‘Power systems modelling and fault analysis: theory and practice’. Newnes Power Engineering Series (Elsevier Science, Oxford, UK, 2007).
    16. 16)
      • 4. Douglass, D., Chisholm, W., Davidson, G., et al: ‘Real-Time overhead transmission-line monitoring for dynamic rating’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 921927. Available at http://ieeexplore.ieee.org/document/6991585/.
    17. 17)
      • 20. Motlis, Y., Barrett, J.S., Davidson, G.A., et al: ‘Limitations of the ruling span method for overhead line conductors at high operating temperatures’, IEEE Trans. Power Deliv., 1999, 14, (2), pp. 549560. Available at: http://ieeexplore.ieee.org/document/754102/.
    18. 18)
      • 9. Alvarez, D.L., Rosero, J.A., Faria da Silva, F., et al: ‘Dynamic line rating – technologies and challenges of PMU on overhead lines: A survey’. 2016 51st Int. Universities Power Engineering Conf. (UPEC), Coimbra, Portugal, September 2016, pp. 16. Available at http://ieeexplore.ieee.org/document/8114069/.
    19. 19)
      • 19. IEEE Std 738-2006: ‘IEEE standard for calculating the current-temperature of bare overhead conductors’. 2007.
    20. 20)
      • 3. CIGRE WG B2.13: ‘Guidelines for increased utilization of existing overhead transmission lines’. Technical Brochure 353 (CIGRE, Paris, France, 2008).
    21. 21)
      • 11. Rehtanz, C.: ‘Synchrophasor based thermal overhead line monitoring considering line spans and thermal transients’, IET Gener. Transm. Distrib., 2016, 10, (5), pp. 12321239.
    22. 22)
      • 2. Sun, W.Q., Zhang, Y., Wang, C.M., et al: ‘Flexible load shedding strategy considering real-time dynamic thermal line rating’, IET Gener. Transm. Distrib., 2013, 7, (2), pp. 130137. Available at http://ieeexplore.ieee.org/document/6519364/.
    23. 23)
      • 6. CIGRE WG B2.36: ‘Guide for application of direct real-time monitoring systems’. Technical Brochure 498 (CIGRE, Paris, France, 2012).
    24. 24)
      • 26. IEEE Std C57.13-2016: ‘IEEE standard requirements for instrument transformers’, IEEE Std C5713-2016 (Revision of IEEE Std C5713-2008), 2016, pp. 196.
    25. 25)
      • 25. Albizu, I., Fernandez, E., Eguia, P., et al: ‘Tension and ampacity monitoring system for overhead lines’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 310. Available at http://ieeexplore.ieee.org/document/6313952/.
    26. 26)
      • 23. Jiliusson, S.R.: ‘Using PMU measurements to assess dynamic line rating of transmission lines’. M.Sc. Thesis in Electrical Power Systems and High Voltage Engineering, Aalborg University, 2013. Available at http://projekter.aau.dk/projekter/files/77194901/Dynamic_Line_Rating.pdf.
    27. 27)
      • 14. Sivanagaraju, G., Chakrabarti, S., Srivastava, S.C.: ‘Uncertainty in transmission line parameters: estimation and impact on line current differential protection’, IEEE Trans. Instrum. Meas., 2013, PP, (99), p. 1.
    28. 28)
      • 12. Bockarjova, M., Andersson, G.: ‘Transmission line conductor temperature impact on state estimation accuracy’. 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, July 2007, pp. 701706. Available at http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4538401.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0661
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0661
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading