Methodology to assess phasor measurement unit in the estimation of dynamic line rating

Methodology to assess phasor measurement unit in the estimation of dynamic line rating

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper presents a methodology to analyse the influence of both atmospheric variations in time and space and the error in synchrophasor measurements to estimate conductor temperature along an overhead line. In this methodology, expressions to compute the error propagation in the computing of temperature because of measurement errors and load variations are proposed. The analysis begins by computing overhead line's thermal and mechanical parameters using simulations of load and atmospheric conditions. Having computed these parameters, values of resistance, inductance and capacitance of the overhead line modelled by means of a equivalent circuit are estimated, with the purpose of quantifying the sensibility of electrical parameters to changes in conductor temperature. Additionally, this analysis allows the identification of the temperature in each span along OHLs. Subsequently, the average conductor temperature is estimated using simulations of synchrophasors through the relationship between resistivity and temperature. This estimated temperature is compared with the temperature computed using atmospheric conditions to obtain the maximum error. This error is contrasted with the acceptable error margins. Thus, during the planning stage, this methodology can be used to assess PMU as a method of computing conductor temperature.


    1. 1)
      • 1. Winter, W., Elkington, K., Bareux, G., et al: ‘Pushing the limits: Europe's new grid: innovative tools to combat transmission bottlenecks and reduced inertia’, IEEE Power Energy Mag., 2015, 13, (1), pp. 6074. Available at
    2. 2)
      • 2. Sun, W.Q., Zhang, Y., Wang, C.M., et al: ‘Flexible load shedding strategy considering real-time dynamic thermal line rating’, IET Gener. Transm. Distrib., 2013, 7, (2), pp. 130137. Available at
    3. 3)
      • 3. CIGRE WG B2.13: ‘Guidelines for increased utilization of existing overhead transmission lines’. Technical Brochure 353 (CIGRE, Paris, France, 2008).
    4. 4)
      • 4. Douglass, D., Chisholm, W., Davidson, G., et al: ‘Real-Time overhead transmission-line monitoring for dynamic rating’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 921927. Available at
    5. 5)
      • 5. Papailiou, K.O.: ‘Overhead lines: a Cigre green book’ (Cigre, Paris, France, 2014).
    6. 6)
      • 6. CIGRE WG B2.36: ‘Guide for application of direct real-time monitoring systems’. Technical Brochure 498 (CIGRE, Paris, France, 2012).
    7. 7)
      • 7. International des grands réseaux électriques. Joint working group B2-C1 (19), C.: ‘Increasing capacity of overhead transmission lines: needs and Solutions’ (CIGRE, Paris, France, 2010). Available at
    8. 8)
      • 8. Fernandez, E., Albizu, I., Bedialauneta, M.T., et al: ‘Review of dynamic line rating systems for wind power integration’, Renew. Sustain. Energy Rev., 2016, 53, pp. 8092.
    9. 9)
      • 9. Alvarez, D.L., Rosero, J.A., Faria da Silva, F., et al: ‘Dynamic line rating – technologies and challenges of PMU on overhead lines: A survey’. 2016 51st Int. Universities Power Engineering Conf. (UPEC), Coimbra, Portugal, September 2016, pp. 16. Available at
    10. 10)
      • 10. Du, Y., Liao, Y.: ‘On-line estimation of transmission line parameters, temperature and sag using PMU measurements’, Electr. Power Syst. Res. , 2012, 93, pp. 3945.
    11. 11)
      • 11. Rehtanz, C.: ‘Synchrophasor based thermal overhead line monitoring considering line spans and thermal transients’, IET Gener. Transm. Distrib., 2016, 10, (5), pp. 12321239.
    12. 12)
      • 12. Bockarjova, M., Andersson, G.: ‘Transmission line conductor temperature impact on state estimation accuracy’. 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, July 2007, pp. 701706. Available at
    13. 13)
      • 13. Frank, S., Sexauer, J., Mohagheghi, S.: ‘Temperature-dependent power flow’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 40074018.
    14. 14)
      • 14. Sivanagaraju, G., Chakrabarti, S., Srivastava, S.C.: ‘Uncertainty in transmission line parameters: estimation and impact on line current differential protection’, IEEE Trans. Instrum. Meas., 2013, PP, (99), p. 1.
    15. 15)
      • 15. Cecchi, V., Leger, A. S., Miu, K., et al: ‘Incorporating temperature variations into transmission-line models’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 21892196.
    16. 16)
      • 16. Matus, M., Saez, D., Favley, M., et al: ‘Identification of critical spans for monitoring systems in dynamic thermal rating’, IEEE Trans. Power Deliv., 2012, 27, (2), pp. 10021009. Available at
    17. 17)
      • 17. Mai, R., Fu, L., HaiBo, X.: ‘Dynamic line rating estimator with synchronized phasor measurement’. 2011 Int. Conf. Advanced Power System Automation and Protection, vol. 2, Beijing, China, October 2011, pp. 940945. Available at
    18. 18)
      • 18. Stephen, R., Douglas, D., Mirosevic, G., et al: ‘Thermal behaviour of overhead conductors’ (CIGRE, Paris, France, 2002). Available at
    19. 19)
      • 19. IEEE Std 738-2006: ‘IEEE standard for calculating the current-temperature of bare overhead conductors’. 2007.
    20. 20)
      • 20. Motlis, Y., Barrett, J.S., Davidson, G.A., et al: ‘Limitations of the ruling span method for overhead line conductors at high operating temperatures’, IEEE Trans. Power Deliv., 1999, 14, (2), pp. 549560. Available at:
    21. 21)
      • 21. CIGRE TF B2.12.3: ‘Sag-tension calculation methods for overhead lines’. Technical Brochure 324 (CIGRE, Paris, France, 2007), p. 91.
    22. 22)
      • 22. Tleis, N.: ‘Power systems modelling and fault analysis: theory and practice’. Newnes Power Engineering Series (Elsevier Science, Oxford, UK, 2007).
    23. 23)
      • 23. Jiliusson, S.R.: ‘Using PMU measurements to assess dynamic line rating of transmission lines’. M.Sc. Thesis in Electrical Power Systems and High Voltage Engineering, Aalborg University, 2013. Available at
    24. 24)
      • 24. CIGRE WG B2.12: ‘Guide for selection of weather parameters for bare overhead conductor ratings’. Technical Brochure 299 (CIGRE, Paris, France, 2006).
    25. 25)
      • 25. Albizu, I., Fernandez, E., Eguia, P., et al: ‘Tension and ampacity monitoring system for overhead lines’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 310. Available at
    26. 26)
      • 26. IEEE Std C57.13-2016: ‘IEEE standard requirements for instrument transformers’, IEEE Std C5713-2016 (Revision of IEEE Std C5713-2008), 2016, pp. 196.
    27. 27)
      • 27. Zhao, J., Tan, J., Wu, L., et al: ‘Impact of measurement error on synchrophasor applications’. 2015. Available at
    28. 28)
      • 28. Carlini, E.M., Pisani, C., Vaccaro, A., et al: ‘Dynamic line rating monitoring in WAMS: challenges and practical solutions’. 2015 IEEE 1st Int. Forum on Research and Technologies for Society and Industry, RTSI 2015 – Proc., Turin, Italy, September 2015, pp. 359364.

Related content

This is a required field
Please enter a valid email address