http://iet.metastore.ingenta.com
1887

Extended multi-energy demand response scheme for industrial integrated energy system

Extended multi-energy demand response scheme for industrial integrated energy system

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

With the development of energy internet technology and smart power distribution & utilisation technology, multiparty interaction based on the complementarity of multi-energy demand has become an alternative solution to avoiding power shortage and improving comprehensive energy efficiency. The industrial integrated energy system with CCHP (combined cooling heating and power) as a generation source of heating and cooling energy is studied. Based on the traditional electrical demand response (DR) mechanism, the demand for electricity, heating and cooling is incorporated in the scope of generalised demand side resources. Considering the difference on price, demand and supply characteristics of multiple energy resources, the multi-energy-based DR scheme and the corresponding optimisation model are established to minimise dispatching expenses and improve the interaction between electricity companies, CCHP and industrial consumers. The numerical analysis shows that the proposed scheme could effectively engage CCHPs and consumers in multi-energy interaction, and the overall expenses can be significantly reduced.

References

    1. 1)
      • A. Gholian , H. Mohsenian-Rad , Y. Hua .
        1. Gholian, A., Mohsenian-Rad, H., Hua, Y.: ‘Optimal industrial load control in smart grid’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 23052316.
        . IEEE Trans. Smart Grid , 5 , 2305 - 2316
    2. 2)
      • P.H. Jayantilal , N. Shah .
        2. Jayantilal, P.H., Shah, N.: ‘A review on electrical energy management techniques for supply and consumer side in industries’, Int. J. Sci. Eng. Technol. Res., 2014, 3, pp. 550556.
        . Int. J. Sci. Eng. Technol. Res. , 550 - 556
    3. 3)
      • M.H. Albadi , E.F. El-Saadany .
        3. Albadi, M.H., El-Saadany, E.F.: ‘Demand response in electricity markets: an overview’. 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, 2007, pp. 15.
        . 2007 IEEE Power Engineering Society General Meeting , 1 - 5
    4. 4)
      • A.Q. Huang , M. L. Crow , G.T. Heydt .
        4. Huang, A.Q., Crow, M. L., Heydt, G.T., et al: ‘The future renewable electric energy delivery and management (FREEDM) system: the energy internet’, Proc. IEEE, 2011, 99, (1), pp. 133148.
        . Proc. IEEE , 1 , 133 - 148
    5. 5)
      • F. Rahimi , A. Ipakchi .
        5. Rahimi, F., Ipakchi, A.: ‘Demand response as a market resource under the smart grid paradigm’, IEEE Trans. Smart Grid, 2010, 1, (1), pp. 8288.
        . IEEE Trans. Smart Grid , 1 , 82 - 88
    6. 6)
      • X. Zhang , G. Hug , I. Harjunkoski .
        6. Zhang, X., Hug, G., Harjunkoski, I.: ‘Cost-effective scheduling of steel plants with flexible EAFs’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 239249.
        . IEEE Trans. Smart Grid , 1 , 239 - 249
    7. 7)
      • L. Jiang , S. Low .
        7. Jiang, L., Low, S.: ‘Multi-period optimal energy procurement and demand response in smart grid with uncertain supply’. IEEE 50th Int. Conf. on Decision and Control and European Control, Orlando, FL, 2011, pp. 43484353.
        . IEEE 50th Int. Conf. on Decision and Control and European Control , 4348 - 4353
    8. 8)
      • Z. Zhou , F. Zhao , J. Wang .
        8. Zhou, Z., Zhao, F., Wang, J.: ‘Agent-based electricity market simulation with demand response from commercial buildings’, IEEE Trans. Smart Grid, 2011, 2, (4), pp. 580588.
        . IEEE Trans. Smart Grid , 4 , 580 - 588
    9. 9)
      • M. Vanouni , N. Lu .
        9. Vanouni, M., Lu, N.: ‘A reward allocation mechanism for thermostatically controlled loads participating in intra-hour ancillary services’, IEEE Trans. Smart Grid, PP, (99), pp. 11, doi: 10.1109/TSG.2017.2652981.
        . IEEE Trans. Smart Grid , 99 , 1 - 1
    10. 10)
      • L. Wang , Q. Li , M. Sun .
        10. Wang, L., Li, Q., Sun, M., et al: ‘Robust optimisation scheduling of CCHP systems with multi-energy based on minimax regret criterion’, IET Gener. Transm. Distrib., 2016, 10, (9), pp. 21942201.
        . IET Gener. Transm. Distrib. , 9 , 2194 - 2201
    11. 11)
      • J. Wang , H. Zhong , Q. Xia .
        11. Wang, J., Zhong, H., Xia, Q., et al: ‘Optimal joint-dispatch of energy and reserve for CCHP-based microgrids’, IET Gener. Transm. Distrib., 2017, 11, (3), pp. 785794.
        . IET Gener. Transm. Distrib. , 3 , 785 - 794
    12. 12)
      • C. Wu , P. Jiang , W. Gu .
        12. Wu, C., Jiang, P., Gu, W., et al: ‘Day-ahead optimal dispatch with CHP and wind turbines based on room temperature control’. 2016 IEEE Int. Conf. on Power System Technology (POWERCON), Wollongong, NSW, 2016, pp. 16.
        . 2016 IEEE Int. Conf. on Power System Technology (POWERCON) , 1 - 6
    13. 13)
      • B.C. Ummels , M. Gibescu , E. Pelgrum .
        13. Ummels, B.C., Gibescu, M., Pelgrum, E., et al: ‘Impacts of wind power on thermal generation unit commitment and dispatch’, IEEE Trans. Energy Convers., 2007, 22, (1), pp. 4451.
        . IEEE Trans. Energy Convers. , 1 , 44 - 51
    14. 14)
      • M. Alipour , B. Mohammadi-Ivatloo , K. Zare .
        14. Alipour, M., Mohammadi-Ivatloo, B., Zare, K.: ‘Stochastic scheduling of renewable and CHP-based microgrids’, IEEE Trans. Ind. Inf., 2015, 11, (5), pp. 10491058.
        . IEEE Trans. Ind. Inf. , 5 , 1049 - 1058
    15. 15)
      • L. Ma , N. Liu , J. Zhang .
        15. Ma, L., Liu, N., Zhang, J., et al: ‘Energy management for joint operation of CHP and PV prosumers inside a grid-connected microgrid: a game theoretic approach’, IEEE Trans. Ind. Inf., 2016, 12, (5), pp. 19301942.
        . IEEE Trans. Ind. Inf. , 5 , 1930 - 1942
    16. 16)
      • K. Zhou , J. Pan , L. Cai .
        16. Zhou, K., Pan, J., Cai, L.: ‘Indirect load shaping for CHP systems through real-time price signals’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 282290.
        . IEEE Trans. Smart Grid , 1 , 282 - 290
    17. 17)
      • G. Papaefthymiou , B. Hasche , C. Nabe .
        17. Papaefthymiou, G., Hasche, B., Nabe, C.: ‘Potential of heat pumps for demand side management and wind power integration in the German electricity market’, IEEE Trans. Sustain. Energy, 2012, 3, (4), pp. 636642.
        . IEEE Trans. Sustain. Energy , 4 , 636 - 642
    18. 18)
      • M. Gitizadeh , S. Farhadi , S. Safarloo .
        18. Gitizadeh, M., Farhadi, S., Safarloo, S.: ‘Multi-objective energy management of CHP-based microgrid considering demand response programs’. 2014 Smart Grid Conf. (SGC), Tehran, 2014, pp. 17.
        . 2014 Smart Grid Conf. (SGC) , 1 - 7
    19. 19)
      • D.S. Kirschen .
        19. Kirschen, D.S.: ‘Demand-side view of electricity markets’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 520527.
        . IEEE Trans. Power Syst. , 2 , 520 - 527
    20. 20)
      • E. Shayesteh , M. Parsa Moghaddam , S. Taherynejhad .
        20. Shayesteh, E., Parsa Moghaddam, M., Taherynejhad, S., et al: ‘Congestion management using demand response programs in power market’. Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE PES General Meeting, Pittsburgh, PA, 2008, pp. 18.
        . Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE PES General Meeting , 1 - 8
    21. 21)
      • M. Liu , Y. Shi , F. Fang .
        21. Liu, M., Shi, Y., Fang, F.: ‘Load forecasting and operation strategy design for CCHP systems using forecasted loads’, IEEE Trans. Control Syst. Technol., 2015, 23, (5), pp. 16721684.
        . IEEE Trans. Control Syst. Technol. , 5 , 1672 - 1684
    22. 22)
      • F. Fang , Q.H. Wang , Y. Shi .
        22. Fang, F., Wang, Q.H., Shi, Y.: ‘A novel optimal operational strategy for the CCHP system based on Two operating modes’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 10321041.
        . IEEE Trans. Power Syst. , 2 , 1032 - 1041
    23. 23)
      • Y. Wang , Q. Chen , C. Kang .
        23. Wang, Y., Chen, Q., Kang, C., et al: ‘Clustering of electricity consumption behavior dynamics toward big data applications’, IEEE Trans. Smart Grid, 2016, 7, (5), pp. 24372447.
        . IEEE Trans. Smart Grid , 5 , 2437 - 2447
    24. 24)
      • Q. Ai , S. Fan , L. Piao .
        24. Ai, Q., Fan, S., Piao, L.: ‘Optimal scheduling strategy for virtual power plants based on credibility theory’, Prot. Control Mod. Power Syst., 2016, 1, (1), p. 3.
        . Prot. Control Mod. Power Syst. , 1 , 3
    25. 25)
      • L. Cheng , C. Liu , Q. Wu .
        25. Cheng, L., Liu, C., Wu, Q., et al: ‘A stochastic optimal model of micro energy internet contains rooftop PV and CCHP system’. 2016 Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS), Beijing, 2016, pp. 15.
        . 2016 Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS) , 1 - 5
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0630
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0630
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address