access icon free Influence of hydrostatic pressure on creeping discharge characteristics over solid/liquid insulating interfaces under AC and DC voltages

This study deals with the influence of hydrostatic pressure on discharges propagating at solid/liquid insulating interface submitted to a divergent electric field under AC and DC voltages. The investigated insulator samples are of phenoplast resin (bakelite) and the considered liquid is mineral oil. The experimental results show that the hydrostatic pressure and the waveform, amplitude and polarity of voltage greatly influence the characteristic parameters of creepage discharges. The stopping (or final) length, L f, which is the maximum extension of these discharges increases with voltage; it is reduced when applying a hydrostatic pressure. L f increases quasi-linearly with the voltage and decreases quasi-linearly when the hydrostatic pressure is increased, whatever the voltage waveform. These results are of great interest especially for design and dimensioning of insulation systems in high voltage oil-filled apparatus and especially non-breathing components.

Inspec keywords: minerals; discharges (electric); hydrostatics; resins; insulating oils; creep

Other keywords: DC voltages; voltage waveform; high voltage oil-filled apparatus; electric field; discharge characteristics; solid-liquid insulating interfaces; AC voltages; voltage amplitude; creepage discharge characteristic parameters; hydrostatic pressure; nonbreathing components; mineral oil; voltage polarity; insulation systems; phenoplast resin

Subjects: Gas discharges; Electric discharges; Organic insulation

References

    1. 1)
      • 6. Beroual, A., Kebbabi, L., Al-Ammar, E., et al: ‘Analysis of creeping discharges activity at solid/liquid interfaces subjected to AC voltage’, IET Gener. Transm. Distrib., 2011, 5, (9), pp. 973978.
    2. 2)
      • 4. Hanaoka, R., Kohrin, T., Miyagawa, T., et al: ‘Creepage discharge characteristics over solid-liquid interfaces with grounded side electrode’, IEEE Trans. Dielectr. Electr. Insul., 2002, 9, (2), pp. 308315.
    3. 3)
      • 16. Beroual, A.: ‘Propagation and structure of streamers in liquid dielectrics’. Liquid Dielectric Committee Int. Study Group – IEEE DEIS, IEEE Electrical Insulation Magazine, March/April 1998, vol. 14, (2), pp. 617.
    4. 4)
      • 13. Murdiya, F., Hanoaka, R., Akiyama, H., et al: ‘Creeping discharge developing on vegetable-based oil/pressboard interface under lightning impulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (6), pp. 19081917.
    5. 5)
      • 10. Beroual, A., Kebbabi, L.: ‘Influence of the voltage waveform and hydrostatic pressure on morphology of final length of discharges propagating over solid/liquid interfaces’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, (6), pp. 15741581.
    6. 6)
      • 17. Beroual, A., Coulibaly, L., Aitken, O., et al: ‘Effect of micro-fillers in PTFE insulators on the characteristics of surface discharges in presence of SF6, CO2 and SF6-CO2 mixture’, IET Gener. Transm. Distrib., 2012, 6, (10), pp. 951957.
    7. 7)
      • 15. Beroual, A.: ‘Electronic and gaseous processes in the pre-breakdown phenomena of dielectric liquids’, J. Appl. Phys., 1993, 73, (9), pp. 45284533.
    8. 8)
      • 2. Otsuka, S., Hanoaka, R., Takata, S., et al: ‘Properties of impulse creeping discharge in palm fatty acid ester oil/pressboard composite insulation system’. IEEE Electrical Insulation Conf., Montreal, Canada, 2009, pp. 101104.
    9. 9)
      • 9. Kebbabi, L., Beroual, A.: ‘Fractal analysis of creeping discharges propagating at solid/liquid interfaces: influence of the nature and geometry of solid insulators’, J. Phys. D, Appl. Phys., 2006, 39, pp. 177183.
    10. 10)
      • 1. Devins, J., Rzad, S.: ‘Streamer propagation in liquids and over liquid-solid interfaces’. Conf. Electrical Insulation and Dielectric Phenomena (CEIDP), 1982, pp. 383394.
    11. 11)
      • 11. Liu, Q., Wang, Z., Dyer, P., et al: ‘Accumulative effect on streamer propagation of lightning impulses on oil/pressboard interface’. Proc. Int. Conf. Conduction and Breakdown in Dielectric Liquids (ICDL), Trondheim, Norway, 2011.
    12. 12)
      • 18. Ohgaki, S., Tsunoda, Y.: ‘Study of the positive streamer growth under surface discharge configuration in liquid paraffin’, IEEE Trans. Electr. Insul., 1984, EI-19, (6), pp. 594601.
    13. 13)
      • 3. Yamamoto, H., Otsuka, S., Hanaoka, R., et al: ‘Creeping discharge in PFAE oil traveling over pressboard surface with small alien substances’, IEEJ Trans. FM, 2010, 130, (11), pp. 10191025.
    14. 14)
      • 12. Liu, L., Wang, Z. D.: ‘Streamer characteristic and breakdown in synthetic and natural ester transformer liquids with pressboard interface under lightning impulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2011, 18, (6), pp. 19081917.
    15. 15)
      • 14. Beroual, A.: ‘Pre-breakdown phenomena in transformer oil under step voltages’, Arch. Elektrotech., 1993, 42, pp. 5764.
    16. 16)
      • 7. Beroual, A., Viet-Hung, D.: ‘Characterization of surface discharges propagating over pressboard in mineral and vegetable oils and their fractal analysis’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (2), pp. 14021408.
    17. 17)
      • 5. Kebbabi, L., Beroual, A.: ‘Optical and electrical characterization of creeping discharges over solid/liquid interfaces under lightning impulse voltage’, IEEE Trans. Dielectr. Electr. Insul., 2006, 13, (3), pp. 565571.
    18. 18)
      • 8. Beroual, A., Viet-Hung, D., Coulibaly, M., et al: ‘Investigation on creeping discharges propagating over pressboard immersed in mineral and vegetable oils under AC, DC and lightning impulse voltages’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (5), pp. 16351640.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0622
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0622
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading