http://iet.metastore.ingenta.com
1887

Moving beyond the optimal transmission switching: stochastic linearised SCUC for the integration of wind power generation and equipment failures uncertainties

Moving beyond the optimal transmission switching: stochastic linearised SCUC for the integration of wind power generation and equipment failures uncertainties

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study recommends a stochastic optimization model for the security constrained unit commitment (SCUC), which incorporates the optimal transmission switching (OTS) for managing the uncertainty of wind power generation and equipment failures, i.e. unit/line outages. Also, this study presents a technique in stochastic SCUC model with the OTS action using the AC optimal power flow (AC OPF). The AC OPF provides a more accurate picture of power flow in the power system compared to the DC optimal power flow that is usually considered in the literature for the stochastic SCUC models and the OTS action. While the stochastic SCUC model with the OTS action based on AC OPF is a mixed-integer non-linear programming model, this study transforms it into a mixed-integer linear programming (MILP) model. The MILP approach uses a piecewise linear model of AC OPF, which allows the reactive power and voltage to be considered directly in power flow model. The proposed stochastic SCUC problem is evaluated on the 6 bus, IEEE 118-bus and 662-bus test systems in pre- and post-OTS action. Obtained results demonstrate the effectiveness of the proposed model.

References

    1. 1)
      • 1. Nikoobakht, A., Aghaei, J.: ‘IGDT-based robust optimal utilization of wind power generation using coordinated flexibility resourcesIET Renew. Power Gener., 2017, 11, (2), pp. 264277.
    2. 2)
      • 2. Nikoobakht, A., Aghaei, J., Mardaneh, M.: ‘Managing the risk of uncertain wind power generation in flexible power systems using information gap decision theory’, Energy, 2016, 114, pp. 846861.
    3. 3)
      • 3. Nasrolahpour, E., Ghasemi, H.: ‘A stochastic security constrained unit commitment model for reconfigurable networks with high wind power penetration’, Electr. Power Syst. Res., 2015, 121, pp. 341350.
    4. 4)
      • 4. Henneaux, P., Kirschen, D.S.: ‘Probabilistic security analysis of optimal transmission switching’, IEEE Trans. Power Syst., 2016, 31, pp. 508517.
    5. 5)
      • 5. Khodaei, A., Shahidehpour, M.: ‘Security-constrained transmission switching with voltage constraints’, Int. J. Electr. Power Energy Syst., 2012, 35, pp. 7482.
    6. 6)
      • 6. Liu, C., Wang, J., Ostrowski, J.: ‘Heuristic prescreening switchable branches in optimal transmission switching’, IEEE Trans. Power Syst., 2012, 27, pp. 22892290.
    7. 7)
      • 7. Bai, Y., Zhong, H., Xia, Q., et al: ‘A two-level approach to ac optimal transmission switching with an accelerating technique’, IEEE Trans. Power Syst., 2017, 32, pp. 16161625.
    8. 8)
      • 8. Khanabadi, M., Ghasemi, H., Doostizadeh, M.: ‘Optimal transmission switching considering voltage security and N-1 contingency analysis’, IEEE Trans. Power Syst., 2013, 28, pp. 542550.
    9. 9)
      • 9. Aghaei, J., Nikoobakht, A., Siano, P., et al: ‘Exploring the reliability effects on the short term AC security-constrained unit commitment: a stochastic evaluation’, Energy, 2016, 114, pp. 10161032.
    10. 10)
      • 10. Akbari, T., Bina, M.T.: ‘Linear approximated formulation of AC optimal power flow using binary discretisation’, IET. Gener. Transm. Distrib., 2016, 10, pp. 11171123.
    11. 11)
      • 11. Zarate-Minano, R., Conejo, A., Milano, F.: ‘OPF-based security redispatching including FACTS devices’, IET. Gener. Transm. Distrib., 2008, 2, pp. 821833.
    12. 12)
      • 12. Berizzi, A., Delfanti, M., Marannino, P., et al: ‘Enhanced security-constrained OPF with FACTS devices’, IEEE Trans. Power Syst., 2005, 20, pp. 15971605.
    13. 13)
      • 13. Shahidehopour, M., Fu, Y.: ‘Benders decomposition: applying Benders decomposition to power systems’, IEEE Power Energy Mag., 2005, 3, pp. 2021.
    14. 14)
      • 14. Valenzuela, J., Mazumdar, M.: ‘Monte Carlo computation of power generation production costs under operating constraints’, IEEE Trans. Power Syst., 2001, 16, pp. 671677.
    15. 15)
      • 15. Qiu, F., Wang, J.: ‘Chance-constrained transmission switching with guaranteed wind power utilization’, IEEE Trans. Power Syst., 2015, 30, pp. 12701278.
    16. 16)
      • 16. Akbari, T., Bina, M.T.: ‘A linearized formulation of AC multi-year transmission expansion planning: a mixed-integer linear programming approach’, Electr. Power Syst. Res., 2014, 114, pp. 93100.
    17. 17)
      • 17. Jabarnejad, M., Wang, J., Valenzuela, J.: ‘A decomposition approach for solving seasonal transmission switching’, IEEE Trans. Power Syst., 2015, 30, pp. 12031211.
    18. 18)
      • 18. Liu, C., Wang, J., Ostrowski, J.: ‘Static switching security in multi-period transmission switching’, IEEE Trans. Power Syst., 2012, 27, pp. 18501858.
    19. 19)
      • 19. Nasri, A., Kazempour, S.J., Conejo, A.J., et al: ‘Network-constrained AC unit commitment under uncertainty: a benders’ decomposition approach’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 412422.
    20. 20)
      • 20. Khodaei, A., Shahidehpour, M.: ‘Transmission switching in security-constrained unit commitment’, IEEE Trans. Power Syst., 2010, 25, pp. 19371945.
    21. 21)
      • 21. Beale, E., Forrest, J.J.: ‘Global optimization using special ordered sets’, Math. Program., 1976, 10, pp. 5269.
    22. 22)
      • 22. Misener, R., Floudas, C.: ‘Piecewise-linear approximations of multidimensional functions’, J. Optim. Theory Appl., 2010, 145, pp. 120147.
    23. 23)
      • 23. Ahmadi-Khatir, A., Conejo, A.J., Cherkaoui, R.: ‘Multi-area energy and reserve dispatch under wind uncertainty and equipment failures’, IEEE Trans. Power Syst., 2013, 28, pp. 43734383.
    24. 24)
      • 24. Ostrowski, J., Anjos, M.F., Vannelli, A.: ‘Tight mixed integer linear programming formulations for the unit commitment problem’, IEEE Trans. Power Syst., 2012, 1, pp. 3946.
    25. 25)
      • 25. Ketabi, A., Ranjbar, A., Feuillet, R.: ‘New approach to standing phase angle reduction for power system restoration’, Int. Trans. Electr. Energy Syst., 202, 12, pp. 301307.
    26. 26)
      • 26. Hazarika, D., Sinha, A.: ‘An algorithm for standing phase angle reduction for power system restoration’, IEEE Trans. Power Syst., 1999, 14, pp. 12131218.
    27. 27)
      • 27. Ketabi, A., Ranjbar, A., Feuillet, R.: ‘New approach to standing phase angle reduction for power system restoration’, Eur. Trans. Electr. Power, 2002, 12, pp. 301307.
    28. 28)
      • 28. Chen, P., Siano, P., Chen, Z., et al: ‘Optimal allocation of power-electronic interfaced wind turbines using a genetic algorithm–Monte Carlo hybrid optimization method’, in ‘Wind power systems’ (Springer, Berlin, Germany, 2010), pp. 123.
    29. 29)
      • 29. GAMS/SCENRED Documentation. Available at www.gams.com/docs/document.htm.
    30. 30)
      • 30. CPLEX, GAMS: The Solver Manuals. GAME/CPLEX, 1996. Available at http://www.gams.com/.
    31. 31)
      • 31. Drud, A.S.GAMS/CONOPT: Bagsvaerd, Denmark: ARKI consulting and development, 1996. Available at http://www.gams.com/.
    32. 32)
      • 32. Vanderbei, R.J.: Power flow optimization website. Availabel at http://www.orfe.princeton.edu/~rvdb/ampl/nlmodels/power/index.html.
    33. 33)
      • 33. Papavasiliou, A., Oren, S.S.: ‘Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network’, Oper. Res., 2013, 61, pp. 578592.
    34. 34)
      • 34. Cheng, X., Overbye, T.J.: ‘PTDF-based power system equivalents’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 18681876.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0617
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0617
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address