access icon free Short-circuit-constrained transmission expansion planning with bus splitting flexibility

Incorporation of the short-circuit level constraints in the transmission expansion planning (TEP) has a direct impact on the final solution. Conventionally, in TEP models, a substation is tackled as a single node where are all transmission lines, power transformers, and generating units are connected to each other. However, bus splitting is a common option in most substations that divides the connected elements into two groups. Doing so, bus splitting can alter the flow path impedances and accordingly manage the short-circuit levels. Here, the short-circuit level constraints are modelled in terms of conventional TEP and bus splitting decision variables. The modelling process is very complex and some non-linear terms appear in the models. To have a tractable model in real-world problems, the non-linearities are converted to linear equivalents making the final TEP model conforming the mixed-integer linear programming format. The performance of the proposed model is examined on the 24-bus reliability test system. The results show that incorporation of the bus splitting option in the TEP problem decreases the total cost of the optimal expansion plan.

Inspec keywords: integer programming; power transmission planning; power transmission lines; linear programming; substations; power transformers

Other keywords: flow path impedances; power transformers; bus splitting flexibility; nonlinear terms; generating units; bus splitting decision variables; short-circuit-constrained transmission expansion planning; 24-bus reliability test system; TEP models; short-circuit level constraints; substations; transmission lines; mixed-integer linear programming

Subjects: Power system planning and layout; Transformers and reactors; Power transmission, distribution and supply; Substations; Optimisation techniques

References

    1. 1)
      • 26. Ghanbari, T., Farjah, F.: ‘Development of an efficient solid-state fault current limiter for microgrid’, IEEE Trans. Power Deliv., 2012, 24, (4), pp. 18291834.
    2. 2)
      • 22. Khodaei, A., Shahidehpour, M., Kamalinia, S.: ‘Transmission switching in expansion planning’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 17221733.
    3. 3)
      • 20. Jin, Y.-X., Cheng, H.-Z., Yan, J.-y., et al: ‘New discrete method for particle swarm optimization and its application in transmission network expansion planning’, Electr. Power Syst. Res., 2007, 77, (3–4), pp. 227233.
    4. 4)
      • 5. Oliveira, G., Costa, A., Binato, S.: ‘Large scale transmission network planning using optimization and heuristic techniques’, IEEE Trans. Power Syst., 1995, 10, (4), pp. 18281834.
    5. 5)
      • 9. Pereira, M.V., Pinto, L.M.: ‘Application of sensitivity analysis of load supplying capability to interactive transmission expansion planning’, IEEE Trans. Power Appl. Syst., 1985, 104, (2), pp. 381389.
    6. 6)
      • 11. Teimourzadeh, S., Aminifar, F.: ‘MILP formulation for transmission expansion planning with short-circuit level constraints’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 31093118.
    7. 7)
      • 12. Kazerooni, A.K., Mutale, J.: ‘Transmission network planning under security and environmental constraints’, IEEE Trans. Power Syst., 2010, 25, (2), pp. 11691178.
    8. 8)
      • 6. Romero, R., Monticelli, A.: ‘A hierarchical decomposition approach for transmission network expansion planning’, IEEE Trans. Power Syst., 1994, 9, (1), pp. 373380.
    9. 9)
      • 16. Binato, S., Pereira, M.V.F., Granville, S.: ‘A new benders decomposition approach to solve power transmission network design problems’, IEEE Trans. Power Syst., 2001, 16, (2), pp. 235240.
    10. 10)
      • 28. Probability Subcommittee.: ‘IEEE reliability test system’, IEEE Trans. Power Appl. Syst, 1979, 98, (6), pp. 20472054.
    11. 11)
      • 18. Chuang, A.S., Wu, F., Varaiya, P.: ‘A game-theoretic model for generation expansion planning: problem formulation and numerical comparisons’, IEEE Trans. Power Syst., 2001, 16, (4), pp. 885891.
    12. 12)
      • 1. Sum-Im, T., Taylor, G., Irving, M., et al: ‘Differential evolution algorithm for static and multistage transmission expansion planning’, IET Gener. Transm. Distrib., 2009, 3, (4), pp. 365384.
    13. 13)
      • 7. Romero, R., Monticelli, A.: ‘A zero-one implicit enumeration method for optimizing investments in transmission expansion planning’, IEEE Trans. Power Syst., 1994, 9, (3), pp. 13851391.
    14. 14)
      • 25. Peelo, D.F., Polovick, G.S., Sawada, J.H., et al: ‘Mitigation of circuit breaker transient recovery voltages associated with current limiting reactors’, IEEE Trans. Power Del., 1996, 11, (2), pp. 865871.
    15. 15)
      • 8. Latorre-Bayona, G., Pérez-Arriaga, I.J.: ‘Chopin, a heuristic model for long term transmission expansion planning’, IEEE Trans. Power Syst., 1994, 9, (4), pp. 18861894.
    16. 16)
      • 10. Silva, I.J., Rider, M., Romero, R., et al: ‘Transmission network expansion planning with security constraints’, IET Gener. Transm. Distrib., 2005, 152, (6), pp. 828836.
    17. 17)
      • 19. Rezende, L.S., da Silva, A.M.L., de Mello Honório, L.: ‘Artificial immune system applied to the multi-stage transmission expansion planning’. Proc. Int. Conf. Artificial Immune System, York, UK, August, 2009, pp. 178191.
    18. 18)
      • 29. Orfanos, G.A., Georgilakis, P.S., Hatziargyriou, N.D.: ‘Transmission expansion planning of systems with increasing wind power integration’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 13551362.
    19. 19)
      • 4. Mavalizadeh, H., Ahmadi, A., Heidari, A.: ‘Probabilistic multi-objective generation and transmission expansion planning problem using normal boundary intersection’, IET Gener. Transm. Distrib., 2015, 9, (6), pp. 560570.
    20. 20)
      • 2. Haffner, S., Monticelli, A., Garcia, A., et al: ‘Branch and bound algorithm for transmission system expansion planning using a transportation model’, IET Gener. Transm. Distrib., 2000, 147, (3), pp. 149156.
    21. 21)
      • 13. Aminifar, F., Fotuhi-Firuzabad, M., Shahidehpour, M., et al: ‘Observability enhancement by optimal PMU placement considering random power system outages’, Energy Syst., 2011, 2, (1), pp. 4565.
    22. 22)
      • 17. Choi, J., El-Keib, A., Tran, T.: ‘A fuzzy branch and bound-based transmission system expansion planning for the highest satisfaction level of the decision maker’, IEEE Trans. Power Syst., 2005, 20, (1), pp. 476484.
    23. 23)
      • 23. Villumsen, J.C., Bronmo, G., Philpott, A.B.: ‘Line capacity expansion and transmission switching in power systems with large-scale wind power’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 731739.
    24. 24)
      • 3. Alizadeh, B., Jadid, S.: ‘Reliability constrained coordination of generation and transmission expansion planning in power systems using mixed integer programming’, IET Gener. Transm. Distrib., 2011, 5, (9), pp. 948960.
    25. 25)
      • 27. Kudymow, A., Noe, M., Schacherer, C., et al: ‘Investigation of YBCO coated conductor for application in resistive superconducting fault current limiters’, IEEE Trans. Appl. Supercond., 2007, 17, (2), pp. 34993502.
    26. 26)
      • 21. Heidarifar, M., Ghasemi, H.: ‘A network topology optimization model based on substation and node-breaker modelling’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 247255.
    27. 27)
      • 24. Ye, L., Lin, L., Juengst, K.-P.: ‘Application studies of superconducting fault current limiters in electric power systems’, IEEE Trans. Appl. Supercond., 2002, 12, (1), pp. 900903.
    28. 28)
      • 15. Alguacil, N., Motto, A.L., Conejo, A.J.: ‘Transmission expansion planning: a mixed-integer LP approach’, IEEE Trans. Power Syst., 2003, 18, (3), pp. 10701077.
    29. 29)
      • 14. Youssef, H., Hackam, R.: ‘New transmission planning model’, IEEE Trans. Power Syst., 1989, 4, (1), pp. 918.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0615
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0615
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading