access icon free Sliding mode load frequency control for multi-area time-delay power system with wind power integration

The interconnected time-delay power system has become an important issue for the open communication network. Meanwhile, due to the output power fluctuation of integrated wind energy, load frequency control (LFC) for power system with variable sources and loads has become more complicated. The novel decentralised sliding mode (SM) LFC strategy is proposed for multi-area time-delay power system with significant wind power penetration. The appropriate switching surface gain is selected to assure the stability of power system with mismatched uncertainties. The SM controller is constructed to satisfy the hitting condition. At last, the SM controller is proved by using the real-time digital simulator device under different case of time delay, wind penetration, load disturbance and operating point. The test results show that the proposed SM LFC can reduce frequency deviation and tie-line power fluctuation effectively.

Inspec keywords: variable structure systems; load regulation; power system stability; frequency control; power generation control; decentralised control; power system interconnection; wind power plants

Other keywords: real-time digital simulator device; wind energy integration; SM LFC strategy; power system stability; tie-line power fluctuation; wind power integration; output power fluctuation; load disturbance; decentralised sliding mode load frequency control strategy; interconnected multiarea time-delay power system; open communication network

Subjects: Multivariable control systems; Control of electric power systems; Power system control; Power system management, operation and economics; Frequency control; Stability in control theory; Wind power plants

References

    1. 1)
      • 30. Vrdoljak, K., Tezak, V., Peric, N.: ‘A sliding surface design for robust load-frequency control in power systems’. IEEE Lausanne Power Tech, July 2007, pp. 279284.
    2. 2)
      • 14. Bevrani, H.: ‘Robust power system frequency control’ (Springer, New York, 2009, vol85).
    3. 3)
      • 31. Gao, W., Wang, Y., Homaifa, A.: ‘Discrete-time variable structure control systems’, IEEE Trans. Ind. Electron., 1995, 42, (2), pp. 117122.
    4. 4)
      • 37. Mi, Y., Fu, Y., Wang, C., et al: ‘Decentralized sliding mode load frequency control for multi-area power systems’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 43014309.
    5. 5)
      • 1. Margaris, I.D., Papathanassiou, S.A., Hatziargyriou, N.D., et al: ‘Frequency control in autonomous power systems with high wind power penetration’, IEEE Trans. Sust. Energy, 2012, 3, (2), pp. 189199.
    6. 6)
      • 43. Uehara, A., Senjyu, T., Yona, A., et al: ‘A frequency control method by wind farm and battery using load estimation in isolated power system’, Int. J. Emerging Electr. Power Syst., 2010, 11, (2), pp. 120.
    7. 7)
      • 21. Zhu, Q., Jiang, L., Yao, W., et al: ‘Robust load frequency control with dynamic demand response for deregulated power systems considering communication delay’, Electr. Power Compon. Syst., 2017, 45, (1), pp. 7587.
    8. 8)
      • 3. Bevrani, H., Daneshmand, P.R., Babahajyani, P., et al: ‘Intelligent LFC concerning high penetration of wind power: synthesis and real-time application’, IEEE Trans. Sustain. Energy, 2013, 5, (2), pp. 655662.
    9. 9)
      • 34. Radosevic, T., Vrdoljak, K., Penic, N.: ‘Optimal sliding mode controller for power system's load- frequency control’. Universities Power Engineering Conf., 2008.
    10. 10)
      • 5. Wangdee, W., Billinton, R.: ‘Considering load-carrying capability and wind speed correlation of WECS in generation adequacy assessment’, IEEE Trans. Energy Convers., 2006, 21, (3), pp. 734741.
    11. 11)
      • 16. Zhang, C.K., Jiang, L., Wu, Q.H., et al: ‘Delay-dependent robust load frequency control for time delay power system’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 21922201.
    12. 12)
      • 24. Zribi, M., Al-Rashed, M., Alrifai, M.: ‘Adaptive decentralized load frequency control of multi-area power systems’, Int. J. Electr. Power Energy Syst., 2005, 27, (8), pp. 575583.
    13. 13)
      • 6. Banakar, H., Changling, L., Ooi, B.T.: ‘Impacts of wind power minute-to-minute variations on power system operation’, IEEE Trans. Power Syst., 2008, 23, (1), pp. 150160.
    14. 14)
      • 27. Zhou, H., Fu, Y., Cong, R.: ‘Fuzzy-based load frequency controller for interconnected power system with wind power integration’. 27th Canadian Conf. on IEEE Electrical and Computer Engineering (CCECE), 2014, pp. 16.
    15. 15)
      • 19. Yu, X., Tomsovic, K.: ‘Application of linear matrix inequalities for load frequency control with communication delays’, IEEE Trans. Power Syst., 2004, 19, (3), pp. 15081515.
    16. 16)
      • 42. Uehara, A., Senjyu, T., Yona, A., et al: ‘Frequency control by coordination control of WTG and battery using load estimation’. Int. Conf. on Power Electronics and Drive Systems, 2009, pp. 216221.
    17. 17)
      • 28. Edwards, C., Spurgeon, S.K.: ‘Sliding mode control theory and applications’ (CRC Press, 1998).
    18. 18)
      • 10. Luo, C., Ooi, B.T.: ‘Frequency deviation of thermal power plants due to wind farms’, IEEE Trans. Energy Convers., 2006, 21, (3), pp. 708716.
    19. 19)
      • 12. Muyeen, S.M, Hasanien, H.M, Tamura, J.: ‘Reduction of frequency fluctuation for wind farm connected power systems by an adaptive artificial neural network controlled energy capacitor system’, IET Renew. Power Gener., 2012, 6, (4), pp. 226235.
    20. 20)
      • 33. Yang, M.S., Lu, H.C.: ‘Sliding mode load-frequency controller design for dynamic stability enhancement of large-scale interconnected power systems’, IEEE Int. Symp. Ind. Electron., 1999, 3, pp. 13161321.
    21. 21)
      • 13. Kunder, P, Balu, N.J, Lauby, M.G.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    22. 22)
      • 39. Yan, X.G., Edwards, C., Spurgeon, S.K., et al: ‘Decentralised sliding-mode control for multimachine power system using only output information’, IET Control Theory Appl., 2004, 151, (5), pp. 627635.
    23. 23)
      • 20. Hiyama, T., Zuo, D., Funabashi, T.: ‘Multi-agent based automatic generation control of isolated standalone power system’. Int. Conf. on Power System Technology. Proc. Power Con, 2002, vol. 1, pp. 139143.
    24. 24)
      • 41. Bevrani, H., Daneshm, P.R.: ‘Fuzzy logic-based load-frequency control concerning high penetration of wind turbines’, IEEE Trans. Power Syst., 2012, 6, (1), pp. 173180.
    25. 25)
      • 4. Dokopoulos, P.S., Saramourtsis, A.C., Bakirtzis, A.G.: ‘Prediction and evaluation of the performance of wind-diesel energy systems’, IEEE Trans. Energy Convers., 1996, 11, (2), pp. 385393.
    26. 26)
      • 26. Jiang, L., Yao, W., Wu, Q.H., et al: ‘Delay-dependent stability for load frequency control with constant and time-varying delays’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 932941.
    27. 27)
      • 25. Kuljaca, O., Gadewadikar, J., Selmic, R.R.: ‘Adaptive neural network frequency control for thermopower generators power system’, Int. J. Robot. Autom., 2011, 26, (1), pp. 8692.
    28. 28)
      • 44. Wang, C., Mi, Y., Fu, Y., et al: ‘Frequency control of an isolated micro-grid using double sliding mode controllers and disturbance observer’, IEEE Trans. Smart Grid, 2016, 6, pp. 11.
    29. 29)
      • 18. Bhowmik, S., Tomsovic, K., Bose, A.: ‘Communication models for third party load frequency control’, IEEE Trans. Power Syst., 2004, 19, (1), pp. 543548.
    30. 30)
      • 15. Elgerd, O.I., Fosha, C.E.: ‘The research for multi-area frequency control problem’, IEEE Trans. PAS Power Appar. Syst., 1970, 89, (2), pp. 551556.
    31. 31)
      • 46. Yan, X.G., Spurgeon, S.K., Edwards, C.: ‘Global decentralised static output feedback sliding mode control for interconnected time-delay systems’, IET Control Theory Appl., 2012, 6, 2, pp. 192202.
    32. 32)
      • 9. Loh, P.C., Chai, Y.K., Li, D., et al: ‘Autonomous operation of distributed storages in microgrids’, IET Power Electron., 2011, 7, (7), pp. 2330.
    33. 33)
      • 8. Wang, P., Billinton, R.: ‘Reliability benefit analysis of adding WTG in a distribution system’, IEEE Trans. Energy Convers., 2001, 16, (2), pp. 134140.
    34. 34)
      • 29. Vrdoljak, K., Peric, N., Petrovic, I.: ‘Sliding mode based load-frequency control in power system’, Electr. Power Syst. Res., 2010, 80, (5), pp. 514527.
    35. 35)
      • 32. Lee, J.J., Xu, Y.: ‘A new method of switching surface design for multivariable variable structure systems’, IEEE Trans. Autom. Control, 1994, 39, (2), pp. 414419.
    36. 36)
      • 17. Bevrani, H., Hiyama, T.: ‘On load–frequency regulation with time delays: design and real-time implementation’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 292300.
    37. 37)
      • 7. Wang, J., Conejo, A.J., Wang, C., et al: ‘Smart grids, renewable energy integration, and climate change mitigation-Future electric energy systems’, Appl. Energy, 2012, 96, (3), pp. 13.
    38. 38)
      • 11. Mohamed, T.H., Bevrani, H., Hassan, A.A., et al: ‘Decentralized model predictive based load frequency control in an interconnected power system’, Energy Convers. Manage., 2011, 52, (2), pp. 10281214.
    39. 39)
      • 2. Tang, Y., Bai, Y., Huang, C., et al: ‘Linear active disturbance rejection-based load frequency control concerning high penetration of wind energy’, Energy Convers. Manage., 2015, 95, pp. 259271.
    40. 40)
      • 36. Al-Hamouz, Z.M., Abdel-Magid, Y.L.: ‘Variable structure load frequency controllers for multi-area power systems’, Int. J. Electr. Power Energy Syst., 1993, 15, (5), pp. 293300.
    41. 41)
      • 40. Senjyu, T., Sakamoto, R., Urasaki, N., et al: ‘Output power leveling of wind turbine generator for all operating regions by pitch angle control’, IEEE Trans. Energy Convers., 2006, 21, (2), pp. 467475.
    42. 42)
      • 35. Mi, Y., Fu, Y., Li, D., et al: ‘The sliding mode frequency control for hybrid power system based on disturbance observer’, Int. J. Electr. Power Energy Syst., 2016, 74, pp. 446452.
    43. 43)
      • 38. Rodriguez-Amenedo, J.L., Arnalte, S., Burgos, J.C., et al: ‘Automatic generation control of a wind farm with variable speed wind turbines’, IEEE Trans. Energy Convers., 2002, 17, (2), pp. 279284.
    44. 44)
      • 23. Qian, D., Tong, S., Liu, H., et al: ‘Load frequency control by neural-network-based integral sliding mode for nonlinear power systems with wind turbine’, Neurocomputing, 2016, 173, (P3), pp. 875885.
    45. 45)
      • 22. Camponogara, E., Talukdar, S.N.: ‘Distributed model predictive control’, IEEE Control Syst., 2002, 22, (1), pp. 4452.
    46. 46)
      • 45. Akhmatov, V.: ‘Induction generator for wind power’ (Multi-science publishing company, August 2005).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0600
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0600
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading