access icon free Mitigation of switching overvoltages in microgrids based on SVC and supercapacitor

This study investigates three different techniques to mitigate the switching overvoltages (SOVs) in the microgrids. At first, the effectiveness of reactive power compensation devices, such as static var compensator (SVC), is evaluated. After that, the performance of the supercapacitor (SC), as an energy storage device, is studied. Finally, with the addition of the SVC to the SC, the possibility to mitigate SOV by compensating both active and reactive power simultaneously is investigated. SOVs result due to unsymmetrical switching operation during de-energisation (disconnection) procedures. The μG two operational modes; grid connected mode and isolated mode, are considered. A small hydro generation unit and three variable speed, double-fed induction generator-based wind turbines are the main renewable power generation units in the tested microgrid system. Alternative Transient Program is used in this study for simulating the compensation device, the energy storage device and the investigated microgrid. The study shows that through the μG two operational modes, the SC has priority over the other two investigated mitigation methods. Furthermore, using the SC or SC with SVC, the results have more regular voltage waveforms.

Inspec keywords: distributed power generation; hydroelectric power stations; wind turbines; asynchronous generators; static VAr compensators; supercapacitors

Other keywords: SOV mitigation; reactive power compensation devices; active power compensation; switching overvoltage mitigation; disconnection procedure; wind turbines; renewable power generation units; energy storage device; isolated mode; regular voltage waveforms; unsymmetrical switching operation; microgrids; microgrid system; static var compensator; variable speed double-fed induction generator; transient program; supercapacitor; de-energisation procedure; SVC; small-hydro generation unit; grid connected mode

Subjects: Other energy storage; Asynchronous machines; Hydroelectric power stations and plants; Wind power plants; Other power apparatus and electric machines; Distributed power generation

References

    1. 1)
      • 21. Zarghami, M., Crow, M. L., Sarangapani, J., et al: ‘A novel approach to inter-area oscillation damping by unified power flow controllers utilizing ultracapacitors’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 404412.
    2. 2)
      • 12. Akwukwaegbu, I.O., Gerald, I.O.: ‘Concepts of reactive power control and voltage stability methods in power system network’, Int. Organisation Sci. Res. J. Comput. Eng., IOSR-JCE, 2013, 11, (2), pp. 1525.
    3. 3)
      • 15. Ambriz-Perez, H., Acha, E., Fuerte-Esquivel, C.: ‘Advanced SVC models for Newton–Raphson load flow and newton optimal power flow studies’, IEEE Trans. Power Syst., 2000, 15, (1), pp. 129136.
    4. 4)
      • 35. James, S., Kularatna, N., Ross, A., et al: ‘Estimation of transient surgy energy transferred with associated time delays for individual components of surge protector circuits’, Inst. Eng. Technol., IET Power Electron. J., 2015, 8, (5), pp. 685692.
    5. 5)
      • 36. Kumar, M., Reddy, M.: ‘Renewable power generation units through micro grid system’, Int. J. Eng. Res. Appl., IJERA, 2013, 3, (5), pp. 15591563.
    6. 6)
      • 39. Wu, F., Zhang, X., Godfrey, K., et al: ‘Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator’, IET Gener. Transm. Distrib., 2007, 1, (5), pp. 751760.
    7. 7)
      • 28. Khonde, S., Palandurkar, M.: ‘Simulation model of thyristor controlled reactor’, Int. J. Eng. Res. Technol., IJERT, 2014, 3, (4), pp. 16921694.
    8. 8)
      • 38. La Seta, I. P.: ‘Modeling and control of wind turbines based on doubly-fed induction generators (DFIG)’. EEUG Meeting 2009, TU Delft, the Netherlands, 2009.
    9. 9)
      • 18. Rufer, A., Barrade, P.: ‘A supercapacitor-based energy storage system for elevators with soft commutated interface’, IEEE Trans. Ind. Appl., 2002, 38, (5), pp. 11511159.
    10. 10)
      • 8. Dixon, J., Morán, L., Rodríguez, J., et al: ‘Reactive power compensation technologies: state-of-the-art review’, Proc. IEEE, 2005, 93, (12), pp. 21442164.
    11. 11)
      • 44. Ali, S. A.: ‘Study of short-circuit currents around detmarovice power station’, Trans. Electr. Electron. Mater., 2014, 15, (3), pp. 117124.
    12. 12)
      • 41. Chiesa, N., Høidalen, H. K., Mork, B., et al: ‘Implementation and verification of the hybrid transformer model in ATPDraw’. Int. Conf. Power Systems Transients, IPST'07, Lyon, France, 4–7 June 2007.
    13. 13)
      • 25. Ton, D. T., Smith, M. A.: ‘The U.S. department of energy's microgrid initiative’, Electr. J., 2012, 25, (8), pp. 8494.
    14. 14)
      • 26. Mariam, L., Basu, M., Conlon, M.: ‘A review of existing microgrid architectures’, J. Eng., 2013, 10, pp. 18.
    15. 15)
      • 11. Hammad, A., Roesle, B.: ‘New roles for static VAR compensators in transmission systems’, Brown Boveri Rev., 1986, 73, pp. 314320.
    16. 16)
      • 19. Kakimoto, N., Satoh, H., Takayama, S., et al: ‘Ramp-rate control of photovoltaic generator with electric double-layer capacitor’, IEEE Trans. Energy Convers., 2009, 24, (2), pp. 465473.
    17. 17)
      • 6. Sood, D.: ‘Reduction of switching over voltages in HV transmission line’, Int. J. Sci. Eng. Res., 2013, 4, (6), pp. 6468.
    18. 18)
      • 3. G.I.G.R.E. Working Group: ‘Switching overvoltage in EHV and UHV systems with special reference to closing and reclosing transmission lines’, Electra, 1973, 30, pp. 70122.
    19. 19)
      • 20. Belyakov, A. I., Sojref, D. A.: ‘High power supercapacitor's solutions for reliable power supply’. Power Engineering Energy and Electrical Drives Conf., POWERENG ‘09, Lisbon, Portugal, March 2009, pp. 348352.
    20. 20)
      • 7. IEEE PES Wind Plant Collector System Design Working Group: ‘Wind power plant grounding, overvoltage protection, and insulation coordination’. IEEE Power & Energy Society General Meeting, PES ‘09, Alberta, Canada, July 2009.
    21. 21)
      • 37. Ahshan, R., Iqbal, M., Mann, G., et al: ‘Modeling and analysis of a microgrid system powered by renewable energy sources’, Open Renew. Energy J., 2013, 6, pp. 722.
    22. 22)
      • 16. Porate, K., Thakre, K.: ‘Voltage stability enhancement of low voltage radial distribution network using static VAR compensator: a case study’, WSEAS Trans. Power Syst., 2009, 4, (1), pp. 3241.
    23. 23)
      • 24. Fernando, J., Kularatna, N.: ‘Supercapacitor assisted surge absorber (proposed SCASA) technique: selection of supercapacitor and magnetic components’. Energy Conversion Congress and Exposition, ECCE, Pittsburgh, USA, 14–18 September 2014, pp. 19921996.
    24. 24)
      • 9. Shah, G., Kash, A., Saxena, N.: ‘Systematic survey for role of reactive power compensating devices in power system’, Int. J. Electr. Instrum. Eng., 2013, 3, (2), pp. 8994.
    25. 25)
      • 42. Hassan, E.O., Badran, E.A., Youssef, F.M.H.: ‘A comparison between some currently used high frequency transformer models’, Mansoura Eng. J., 2013, 39, (1), pp. E1E7.
    26. 26)
      • 5. King, R., Moore, F., Jenkins, N., et al: ‘Switching transients in offshore wind farms – impact on the offshore and onshore networks’. Int. Conf. Power Systems Transients, IPST2011, Delft, the Netherlands, 14–17 June 2011.
    27. 27)
      • 14. Shea, J. J.: ‘Understanding FACTS concepts and technology of flexible AC transmission systems’, IEEE Electr. Insul. Mag., 2002, 18, (1), p. 46.
    28. 28)
      • 23. Kularatna, N., Fernando, J., Pandey, A.: ‘Surge endurance capability testing of supercapacitor families’. IEEE Industrial Electronics Society Conf., IECON 2010, Glendale, USA, November 2010, pp. 18581863.
    29. 29)
      • 1. Shafy, A.S., Emam, A.M., Ghania, S.M., et al: ‘Analysis and mitigation techniques of switching overvoltages for a 500 kV transmission line’, Int. Electr. Eng. J., IEEJ, 2016, 7, (3), pp. 21962203.
    30. 30)
      • 17. Fetouh, T., Zaky, M. S., ‘New approach to design SVC-based stabiliser using genetic algorithm and rough set theory’, IET Gener. Transm. Distrib., 2017, 11, (2), pp. 372382.
    31. 31)
      • 13. Vishwakarma, A., Sahu, D.: ‘Efficient voltage regulation in three phase AC transmission lines using static VAR compensator’, Int. J. Adv. Res. Electr. Electron. Instrum. Eng., IJAREEIE, 2013, 2, (5), pp. 17731780.
    32. 32)
      • 34. Halper, M. S., Ellenbogen, J. C.: ‘Supercapacitors: a brief overview’, MITRE Nano-systems Group, March 2006, available at www.mitre.org.
    33. 33)
      • 22. Kularatna, N., Fernando, J., Pandey, A., et al: ‘Surge capability testing of supercapacitor families using a lightning surge simulator’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 49424949.
    34. 34)
      • 4. Awad, E.A., Badran, E.A., Youssef, F.H.: ‘Mitigation of temporary overvoltages in weak grids connected to DFIG-based wind farms’, J. Electr. Syst., JES, 2014, 10, (4), pp. 431444.
    35. 35)
      • 10. Chaves, F.S., Vale, M.H.: ‘Power system reactive compensation: evaluation of expansion plans taking into account electromagnetic transient restrictions’, Rev. Controle Autom., 2009, 20, (1), pp. 6371.
    36. 36)
      • 2. Soloot, A., Gholami, A., Agheb, E., et al: ‘Investigation of transmission line overvoltages and their deduction approach’, Int. J. Electr. Comput. Energetic Electron. Commun. Eng., 2009, 3, (5), pp. 10701078.
    37. 37)
      • 32. Hajizadeh, A., Golkar, M. A., Norum, L.: ‘Robust control of hybrid fuel cell/energy storage distributed power generation system in weak grid under balanced and unbalanced voltage sag’, Eur. Trans. Electr. Power, 2011, 21, (1), pp. 522540.
    38. 38)
      • 40. Moura, F., Camacho, J., Resende, J., et al: ‘Synchronous generator, excitation and speed governor modeling in ATP-EMTP for interconnected DG studies’. Int. Conf. Electrical Machines, ICEM'08, Vilamoura, Portugal, 2008.
    39. 39)
      • 27. Mirsaeidi, S., Said, D., Mustafa1, M., et al: ‘Review and analysis of existing protection strategies for micro-grids’, J. Electr. Syst., JES, 2014, 10, (1), pp. 110.
    40. 40)
      • 29. TCR Modeling Using ATP, EPRI Report, 1995.
    41. 41)
      • 33. Sahay, K., Dwivedi, B.: ‘Design and analysis of supercapacitor energy storage system for energy stabilization of distribution network’, Electr. Power Qual. Utilisation, 2009, 15, (1), pp. 2532.
    42. 42)
      • 30. Mahapatra, S., Goyal, A., Kapil, N.: ‘Thyristor controlled reactor for power factor improvement’, Int. J. Eng. Res. Appl., IJERA, 2014, 4, (4), pp. 5559.
    43. 43)
      • 31. Spyker, R. L., Nelms, R. M.: ‘Classical equivalent circuit parameters for a double-layer capacitor’, IEEE Trans. Aerosp. Electron. Syst., 2000, 30, (3), pp. 829836.
    44. 44)
      • 43. Prikler, L., Høidalen, H.: ‘ATPDRAW version 5.6 Users’ Manual’, November 2009.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0503
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0503
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading