access icon free Methodology for the analysis of dc-network resonance-related instabilities in voltage-source converter-based multi-terminal HVDC systems

A method to investigate dc-network instabilities in multi-terminal high-voltage DC (HVDC) systems is presented. The method consists of defining subsystems, called in this Letter Z and Y , which can be interpreted as a dc-network impedance matrix and as set of converter admittances, respectively. Through the analysis of the Z and Y terms, it is shown that resonances originated from the system's dc network can be amplified if the converters show a negative dc-side conductance. Moreover, it is also shown that converters located at different terminals can contribute to instability if the resonances to which they are exposed are of the same frequency. The analysis method is applied to a four-terminal HVDC system as an example and, using the theory developed in this Letter, mitigation measures are applied. The results are verified through time-domain simulations.

Inspec keywords: voltage-source convertors; HVDC power convertors; electric admittance; impedance matrix; HVDC power transmission

Other keywords: voltage-source converter-based multiterminal HVDC systems; Y term analysis; mitigation measures; Z term analysis; four-terminal HVDC system; converter admittances; negative dc-side susceptance; dc-network resonance-related instabilities; dc-network impedance matrix

Subjects: d.c. transmission; AC-DC power convertors (rectifiers); DC-AC power convertors (invertors)

References

    1. 1)
      • 1. Tang, L.: ‘Control and protection of multi-terminal DC transmission systems based on voltage-source converters’. Department of Electrical and Computer Engineering, University of McGill, Montreal, Québec, Canada, 2003.
    2. 2)
      • 28. Beza, M., Bongiorno, M., Stamatiou, G.: ‘Analytical derivation of the AC-side input admittance of a modular multilevel converter with open- and closed-loop control strategies’, IEEE Trans. Power Deliv., 2017, PP, (99), p. 1.
    3. 3)
      • 18. Bayo-Salas, A., Beerten, J., Rimez, J., et al: ‘Impedance-based stability assessment of parallel VSC HVDC grid connections’. Proc. 11th IET Int. Conf. AC and DC Power Transmission, Birmingham, UK, February 2015.
    4. 4)
      • 6. Thams, F., Suul, J.A., D'Arco, S., et al: ‘Stability of DC voltage droop controllers in VSC HVDC systems’. Proc. PowerTech, Eindhoven, Netherlands, June 2015.
    5. 5)
      • 24. Harnefors, L., Bongiorno, M., Lundberg, S.: ‘Input-admittance calculation and shaping for controlled voltage-source converters’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 33233334.
    6. 6)
      • 5. Kalcon, G.O., Adam, G.P., Anaya-Lara, O., et al: ‘Small-signal stability analysis of multi-terminal VSC-based dc transmission systems’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 18181830.
    7. 7)
      • 23. Harnefors, L., Nee, H.P.: ‘A general algorithm for speed and position estimation of AC motors’, IEEE Trans. Ind. Electron., 2000, 47, (1), pp. 7783.
    8. 8)
      • 11. Wang, W., Barnes, M., Marjanovic, O., et al: ‘Impact of DC breaker systems on multiterminal VSC-HVDC stability’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 769779.
    9. 9)
      • 13. Stamatiou, G., Bongiorno, M.: ‘Stability analysis of two-terminal VSC-HVDC systems using the net-damping criterion’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 17481756.
    10. 10)
      • 14. Saad, H., Fillion, Y., Deschanvres, S., et al: ‘On resonances and harmonics in HVDC-MMC station connected to AC grid’, IEEE Trans. Power Deliv., 2017, 32, (3), pp. 15651573.
    11. 11)
      • 25. Zhang, L.: ‘Modeling and control of VSC-HVDC links connected to weak AC systems’. Department of Electrical Engineering, Royal Institute of Technology, Stockholm, Sweden, 2010.
    12. 12)
      • 10. Prieto-Araujo, E., Egea-Alvarez, A., Fekriasl, S., et al: ‘DC voltage droop control design for multi-terminal HVDC systems considering AC and DC grid dynamics’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 575585.
    13. 13)
      • 21. Pinares, G., Bongiorno, M.: ‘Modeling and analysis of VSC-based HVDC systems for dc network stability studies’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 848856.
    14. 14)
      • 15. Amin, M., Molinas, M.: ‘Understanding the origin of oscillatory phenomena observed between wind farms and HVDC systems’, IEEE J. Emerging Sel. Top. Power Electron., 2017, 5, (1), pp. 378392.
    15. 15)
      • 17. Wen, B., Dong, D., Boroyevich, D., et al: ‘Impedance-based analysis of grid-synchronization stability for three-phase paralleled converters’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 2638.
    16. 16)
      • 20. Xu, S.J., Darouach, M., Schaefers, J.: ‘Expansion of det(A + B) and robustness analysis of uncertain state space systems’, IEEE Trans. Autom. Control, 1993, 38, (11), pp. 16711675.
    17. 17)
      • 4. Rault, P., Colas, F., Guillaud, X., et al: ‘Method for small signal stability analysis of VSC-MTDC grids’. Proc. IEEE PES General Meeting, San Diego, CA, June 2012.
    18. 18)
      • 9. Sun, J.: ‘Autonomous local control and stability analysis of multiterminal DC systems’, IEEE J. Emerging Sel. Top. Power Electron., 2015, 3, (4), pp. 10781089.
    19. 19)
      • 22. Harnefors, L.: ‘Model-based current control of ac machine using the internal model control method’, IEEE Trans. Ind. Appl., 1998, 34, (1), pp. 133141.
    20. 20)
      • 26. Grainger, J.J., Stevenson, W.D.: ‘Power system analysis’ (McGraw-Hill Book Co., 1994).
    21. 21)
      • 7. Zadeh, M.K., Amin, M., Suul, J.A., et al: ‘Small-signal stability study of the Cigré DC grid test system with analysis of participation factors and parameter sensitivity of oscillatory modes’. Proc. Power System Computation Conf., Wroclaw, Poland, August 2014.
    22. 22)
      • 12. Amin, M., Molinas, M.: ‘Small-Signal stability assessment of power electronics based power systems: a discussion of impedance- and eigen value-based methods’, IEEE Trans. Ind. Appl., 2017, PP, (99), p. 1.
    23. 23)
      • 19. Skogestad, S., Postlethwaite, I.: ‘Multivariable feedback control’ (John Wiley & Sons Ltd., 2005).
    24. 24)
      • 16. Sainz, L., Cheah-Mane, M., Monjo, L., et al: ‘Positive-net-damping stability criterion in grid-connected VSC system’, IEEE J. Emerging Sel. Top. Power Electron., 2017, PP, (99), p. 1.
    25. 25)
      • 2. Jiang-Hafner, Y., Manchen, M.: ‘Stability enhancement and blackout prevention by VSC based HVDC’. Proc. Cigré Symp., The Electric Power of The Future – Integrating Supergrids and Microgrids, Bologna, Italy, September 2011.
    26. 26)
      • 8. Beerten, J., D'Arco, S., Suul, J.A.: ‘Identification and small-signal analysis of interaction modes in VSC MTDC systems’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 888897.
    27. 27)
      • 27. Pinares G. Bongiorno, M.: ‘Definition of a voltage-source converter dc-side admittance and its impact on dc-network stability’. Proc. Int. Conf. Power Electronics (ECCE-Asia), Seoul, South Korea, June 2015.
    28. 28)
      • 3. Noman, A., Norga, S., Nee, H.P., et al: ‘HVDC supergrids with modular multilevel converters – the power transmission backbone of the future’. Proc. Ninth Int. Multi-Conf. Systems, Signals and Devices (SSD), Chemnitz, Germany, March 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0491
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0491
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading