Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Searching severest VSM basing on CCPF among multiple dispatch centres

It is important to search voltage stability margin (VSM) of an interconnected power system in order to determine secure operation constraints. Traditionally, centralised continuation power flow (CPF) is used, which may fail to model the varied load growth directions of different regional power grids. In this study, a distributed VSM searching method is proposed grounding on a coordinated CPF (CCPF) performed by neighbouring dispatch centres. First, a distributed power flow model for VSM is established, which considers the automatic allocation of network loss. Then, a critical bus of the power system is used to indicate the system-level voltage stability. It is chosen according to the sensitivity of the minimum singular value of Jacobi matrix to nodal voltage amplitudes, and the sensitivity of boundary power injection to nodal voltage amplitudes. Moreover, the gradient of critical bus voltage amplitude to regional loading parameters is computed, which is set as the load growth direction for the current step. The severest VSM is obtained by solving the CCPF iteratively along the worst load growth direction. Tests on IEEE 118 bus system and a real power grid of China validate the proposed method in the enhancement of the security for interconnected power systems.

References

    1. 1)
      • 18. Song, Y., Wan, H., Johns, A.: ‘Kohonen neural network based approach to voltage weak buses/areas identification’, IEE Proc., Gener. Transm. Distrib., 1997, 144, (3), pp. 340344.
    2. 2)
      • 9. Pordanjani, I., Wang, Y., Xu, W.: ‘Identification of critical components for voltage stability assessment using channel components transform’, IEEE Trans. Smart Grid, 2013, 4, (2), pp. 11221132.
    3. 3)
      • 1. Greene, S., Dobson, I., Alvarado, F.: ‘Sensitivity of the loading margin to voltage collapse with respect to arbitrary parameters’, IEEE Trans. Power Syst., 1997, 12, (1), pp. 262272.
    4. 4)
      • 4. Sui, H., Fan, S., Zhao, J., et al: ‘Voltage stability assessment with the consideration of uneven regional load growth’. 2007 39th North American Power Symp., Las Cruces, NM, September 2007, pp. 379384.
    5. 5)
      • 8. Xu, W., Pordanjani, I., Wang, Y., et al: ‘A network decoupling transform for phasor data based voltage stability analysis and monitoring’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 261270.
    6. 6)
      • 2. Li, S., Chiang, H.: ‘Continuation power flow with multiple load variation and generation re-dispatch patterns’. 2006 IEEE Power Engineering Society General Meeting, Montreal, Canada, June 2006, pp. 16.
    7. 7)
      • 15. Erseghe, T.: ‘Distributed optimal power flow using ADMM’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 23702380.
    8. 8)
      • 23. Milano, F.: ‘Power system modelling and scripting’ (Springer, Berlin Heidelberg, 2010).
    9. 9)
      • 14. Wang, J., Chen, Y., Shen, C.: ‘A method of distributed state estimation based on improved innovation graph’. 2008 Joint Int. Conf. Power System Technology and IEEE Power India Conf., New Delhi, India, October 2008, pp. 15.
    10. 10)
      • 7. Acharya, N., Kavasseri, R.: ‘A faster continuation power flow in rectangular coordinates for voltage stability assessment’. 2016 IEEE Power and Energy Society General Meeting, Boston, MA, July 2016, pp. 15.
    11. 11)
      • 24. IEEE Task Force on Load Representation for Dynamic Performance: ‘Standard load models for power flow and dynamic performance simulation’, IEEE Trans. Power Syst., 1995, 10, (3), pp. 13021313.
    12. 12)
      • 22. Shen, C., Chen, Y., Huang, S.: ‘Grid-service based distributed power flow calculation’. 2006 Int. Conf. Power System Technology, Chongqing, China, October 2006, pp. 16.
    13. 13)
      • 3. Kataoka, Y.: ‘A probabilistic nodal loading model and worst case solutions for electric power system voltage stability assessment’, IEEE Trans. Power Syst., 2003, 18, (4), pp. 15071514.
    14. 14)
      • 19. Baone, C., Acharya, N., Veda, S., et al: ‘Fast contingency screening and ranking for small signal stability assessment’. 2014 IEEE PES General Meeting, National Harbor, MD, July 2014, pp. 15.
    15. 15)
      • 26. Liu, Q., Liu, C., Liu, Q.: ‘Coordinated voltage control with online energy margin constraints’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 20642075.
    16. 16)
      • 12. Huang, S., Chen, Y., Shen, C., et al: ‘Flexible power-flow algorithm for distribution power system with DER’. 2012 IEEE Int. Conf. Power System Technology, Auckland, New Zealand, October 2012, pp. 16.
    17. 17)
      • 11. Chen, Y., Shen, C., Wang, J.: ‘Distributed transient stability simulation of power systems based on a Jacobian-free Newton-GMRES method’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 146156.
    18. 18)
      • 25. Stewart, G.W.: ‘Perturbation theory for the singular value decomposition’ (University of Maryland, College Park, 1990).
    19. 19)
      • 16. Gao, B., Morison, G., Kundur, P.: ‘Voltage stability evaluation using modal analysis’, IEEE Trans. Power Syst., 1992, 7, (4), pp. 15291542.
    20. 20)
      • 28. Hu, F., Sun, K., Rosso, A., et al: ‘Measurement-based real-time voltage stability monitoring for load areas’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 27872798.
    21. 21)
      • 20. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill Education, 1994, 1st edn.).
    22. 22)
      • 10. Huang, S., Chen, Y., Shen, C., et al: ‘Feasibility study on online DSA through distributed time domain simulations in WAN’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 12141224.
    23. 23)
      • 13. Ren, Z., Chen, Y., Huang, S., et al: ‘Distributed power flow considering network loss allocation and load factor of subareas’. 2016 35th Chinese Control Conf., Chengdu, China, July 2016, pp. 28202824.
    24. 24)
      • 6. Mori, H., Seki, K.: ‘Continuation Newton-GMRES power flow with linear and nonlinear predictors’. 2007 Large Engineering Systems Conf. Power Engineering, Montreal, Quebec, Canada, October 2007, pp. 171175.
    25. 25)
      • 21. Chen, Y., Shen, C.: ‘A Jacobian-free Newton-GMRES(m) method with adaptive preconditioner and its application for power flow calculations’, IEEE Trans. Power Syst., 2006, 21, (3), pp. 10961103.
    26. 26)
      • 17. Moger, T., Dhadbanjan, T.: ‘A novel index for identification of weak nodes for reactive compensation to improve voltage stability’, IET Gener. Transm. Distrib., 2015, 9, (14), pp. 18261834.
    27. 27)
      • 5. Chaniotis, D, Pai, M.: ‘A new preconditioning technique for the GMRES algorithm in power flow and P–V curve calculations’, Int. J. Electr. Power Energy Syst., 2003, 25, (3), pp. 239245.
    28. 28)
      • 27. Lakkireddy, J., Rastgoufard, R., Leevongwat, I., et al: ‘Steady state voltage stability enhancement using shunt and series FACTS devices’. 2015 Clemson University Power Systems Conf. (PSC), Clemson, SC, March 2015, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0450
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0450
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address