access icon free Non-cooperative and cooperative optimisation of battery energy storage system for energy management in multi-microgrid

Multi-microgrid is an integrated system of microgrids, distributed generations, and battery energy storage system (BESS). As the significant equipment in microgrid, BESS can perform multitasking, such as load management and peak shaving. This study mainly focuses on the energy consumption scheduling of multi-microgrid considering the optimisation of BESS capacity. Energy management with BESS optimisation is studied by considering the cost of distributed generations, cost of BESS, and bidirectional energy trading. The optimisation problem is tackled from two different aspects: an individual-oriented optimisation and a coalition-based optimisation. In the first approach, each microgrid is optimised individually with a non-cooperative game; while in the second approach, the joint optimisation of all microgrids is formulated through cooperation among multi-microgrids. In order to achieve the optimal energy consumption strategy and BESS capacity, distributed algorithms for two formulations are presented, which combine particle swarm optimisation and interior point method. Simulation results show that both approaches can contribute to peak shaving and reducing the daily cost of multi-microgrid.

Inspec keywords: distributed power generation; energy consumption; particle swarm optimisation; battery storage plants; power generation economics; game theory; power markets; energy management systems; distributed algorithms

Other keywords: battery energy storage system; BESS capacity optimisation; noncooperative optimisation; particle swarm optimisation; coalition-based optimisation; distributed generation cost; individual-oriented optimisation; interior point method; cooperative optimisation; optimal energy consumption strategy; load management; BESS cost; energy management; bidirectional energy trading; multimicrogrid; energy consumption scheduling; noncooperative game; peak shaving; distributed algorithms

Subjects: Power system management, operation and economics; Game theory; Optimisation techniques; Distributed power generation; Other power stations and plants

References

    1. 1)
      • 9. Pascual, J., Barricarte, J., Sanchis, P.: ‘Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting’, Appl. Energy, 2015, 158, pp. 1225.
    2. 2)
      • 1. Llaria, A., Curea, O., Jimĺęnez, J.: ‘Survey on microgrids: unplanned islanding and related inverter control techniques’, Renew. Energy, 2015, 36, (8), pp. 20522061.
    3. 3)
      • 3. Guerrero, J.M., Blaabjerg, F., Zhelev, T.: ‘Distributed generation: toward a new energy paradigm’, IEEE Ind. Electron. Mag., 2010, 4, (1), pp. 5264.
    4. 4)
      • 6. Hatziargyriou, N., Asano, H., Iravani, R.: ‘Microgrids’, IEEE Power Energy Mag., 2007, 5, (4), pp. 7894.
    5. 5)
      • 8. Barsali, S., Ceraolo, M., Pelacchi, P.: ‘Control techniques of dispersed generators to improve the continuity of electricity supply’. IEEE Power Engineering Society Winter Meeting, New York, NY, USA, January 2002, pp. 789794.
    6. 6)
      • 4. Hatziargyriou, N.D., Meliopoulos, A.P.S.: ‘Distributed energy sources: technical challenges’. IEEE Power Engineering Society Winter Meeting, New York, NY, USA, January 2002, pp. 10171022.
    7. 7)
      • 34. Esmin, A.A.A., Lambert-Torres, G., De Souza, A.C.Z.: ‘A hybrid particle swarm optimization applied to loss power minimization’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 859866.
    8. 8)
      • 15. Zhou, H., Bhattacharya, T., Tran, D.: ‘Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications’, IEEE Trans. Power Electron., 2011, 26, (3), pp. 923930.
    9. 9)
      • 23. Soliman, H.M., Leon-Garcia, A.: ‘Game-theoretic demand-side management with storage devices for the future smart grid’, IEEE Trans. Smart Grid, 2014, 5, (3), pp. 14751485.
    10. 10)
      • 26. Baharlouei, Z., Hashemi, M.: ‘Efficiency-fairness trade-off in privacy-preserving autonomous demand side management’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 799808.
    11. 11)
      • 22. Saad, W., Han, Z., Poor, H.V.: ‘Game-theoretic methods for the smart grid: an overview of microgrid systems, demand-side management, and smart grid communications’, IEEE Signal Process. Mag., 2012, 29, (5), pp. 86105.
    12. 12)
      • 18. Pourmousavi, S.A., Nehrir, M.H., Colson, C.M.: ‘Real-time energy management of a stand-alone hybrid wind-microturbine energy system using particle swarm optimization’, IEEE Trans. Sustain. Energy, 2010, 1, (3), pp. 193201.
    13. 13)
      • 20. Xiao, H., Bo, W., Yang, Y.: ‘Energy storage capacity optimization for microgrid considering battery life and economic operation’, High Volt. Eng., 2015, 41, (10), pp. 32563265.
    14. 14)
      • 30. Zhang, M., Xie, Q., Li, L.: ‘Optimal sizing of energy storage for microgrids considering energy management of electric vehicles’, Proc. Chin. Soc. Electr. Eng., 2015, 35, (18), pp. 46634673.
    15. 15)
      • 19. Nguyen, T.A., Crow, M.L., Elmore, A.C.: ‘Optimal sizing of a vanadium redox battery system for microgrid systems’, IEEE Trans. Sustain. Energy, 2015, 6, (3), pp. 729737.
    16. 16)
      • 10. Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T.: ‘Power-electronic systems for the grid integration of renewable energy sources: a survey’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10021016.
    17. 17)
      • 25. Samadi, P., Mohsenian-Rad, H., Schober, R.: ‘Advanced demand side management for the future smart grid using mechanism design’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 11701180.
    18. 18)
      • 35. Kerdphol, T., Fuji, K., Mitani, Y.: ‘Optimization of a battery energy storage system using particle swarm optimization for stand-alone microgrids’, Int. J. Electr. Power Energy Syst., 2016, 81, pp. 3239.
    19. 19)
      • 13. Rajasekharan, J, Koivunen, V.: ‘Optimal energy consumption model for smart grid households with energy storage’, IEEE J. Sel. Top. Signal Process., 2014, 8, (6), pp. 11541166.
    20. 20)
      • 28. Kahrobaee, S., Asgarpoor, S., Qiao, W.: ‘Optimum sizing of distributed generation and storage capacity in smart households’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 17911801.
    21. 21)
      • 29. Su, J., Zhou, L., Li, R.: ‘Cost-benefit analysis of distributed grid-connected photovoltaic power generation’, Proc. Chin. Soc. Electr. Eng., 2013, 33, (34), pp. 5056.
    22. 22)
      • 33. Saad, W, Han, Z, Debbah, M, et al: ‘Coalitional game theory for communication networks’, IEEE Signal Process. Mag., 2009, 26, (5), pp. 7797.
    23. 23)
      • 21. Nguyen, T.A., Crow, M.L.: ‘Stochastic optimization of renewable-based microgrid operation incorporating battery operating cost’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 22892296.
    24. 24)
      • 14. Kim, A.R., Seo, H.R., Kim, G.H.: ‘Operating characteristic analysis of HTS SMES for frequency stabilization of dispersed power generation system’, IEEE Trans. Appl. Supercond., 2010, 20, (3), pp. 13341338.
    25. 25)
      • 32. Rosen, J.B.: ‘Existence and uniqueness of equilibrium points for concave n-person games’, Econometrica, 1965, 33, (3), pp. 520534.
    26. 26)
      • 12. Aamir, M., Kalwar, K.A., Mekhilef, S.: ‘Review: uninterruptible power supply (UPS) system’, Renew. Sust. Energy Rev., 2016, 58, pp. 13951410.
    27. 27)
      • 16. Koohi-Kamali, S., Rahim, N.A., Mokhlis, H.: ‘Smart power management algorithm in microgrid consisting of photovoltaic, diesel, and battery storage plants considering variations in sunlight, temperature, and load’, Energy Convers. Manage., 2014, 84, pp. 562582.
    28. 28)
      • 5. Smallwood, C.L.: ‘Distributed generation in autonomous and nonautonomous micro grids’. Rural Electric Power Conf., Colorado Springs, CO, USA, May 2002, pp. D1-1D1-6.
    29. 29)
      • 27. Gao, B., Zhang, W., Tang, Y.: ‘Game-theoretic energy management for residential users with dischargeable plug-in electric vehicles’, Energies, 2014, 7, (11), pp. 74997518.
    30. 30)
      • 31. Ding, M., Wang, B., Zhao, B.: ‘Configuration optimization of capacity of standalone PV-wind-diesel-battery hybrid microgrid’, Power Syst. Technol., 2013, 37, (3), pp. 575581.
    31. 31)
      • 24. Mohsenian-Rad, A.H., Wong, V.W.S., Jatskevich, J.: ‘Autonomous demand-side management based on game-theoretic energy consumption scheduling for the future smart grid’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 320331.
    32. 32)
      • 7. Lopes, J.A.P., Moreira, C.L., Madureira, A.G.: ‘Defining control strategies for microgrids islanded operation’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 916924.
    33. 33)
      • 17. Venayagamoorthy, G.K, Sharma, R.K, Gautam, P.K.: ‘Dynamic energy management system for a smart microgrid’, IEEE Trans. Neural Networks Learn. Syst., 2016, 27, (8), pp. 16431656.
    34. 34)
      • 11. Dell, R.M., Rand, D.A.J.: ‘Energy storage – a key technology for global energy sustainability’, J. Power Sources, 2001, 100, (1), pp. 217.
    35. 35)
      • 2. Balaguer, I.J., Lei, Q., Yang, S.: ‘Control for grid-connected and intentional islanding operations of distributed power generation’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 147157.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0401
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0401
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading