access icon free Smart load management of distribution-class toroidal transformers using a dynamic thermal model

Thermal behaviour is a prime factor in the accurate performance assessment of power transformers as well as in the prediction of their life expectancy. This study presents a computer modelling tool based on an electro-thermal equivalent circuit of transformers that is able to predict the hot-spot temperature and average surface temperatures for all internal layers of distribution-class toroidal transformers. Temperature is the limiting factor that prevents running transformers for hours or days in overload conditions. The modelling tool presented in this study is capable to identify the safe maximum overload current and duration that a transformer can handle without introducing damage or loss of life. The model is helpful to predict the short-term (few hours) and long-term (few days) overload capabilities of transformers. The electro-thermal model can also be used as a tool to optimise the design and evaluate the performance of transformers. This study is specifically focused on the implementation of the proposed method on dry-type distribution-grade toroidal transformers. The model is built using circuit components (lumped R and C) obtained from the thermal–electrical analogy. The model is validated with numerous finite-element method simulations and laboratory tests with transformers of various power ratings.

Inspec keywords: power transformers; thermal analysis; equivalent circuits; load management; power distribution

Other keywords: hot-spot temperature prediction; smart load management; performance assessment; computer modelling tool; dry-type distribution-grade toroidal transformers; life expectancy prediction; average surface temperatures; dynamic thermal model; finite-element method; power transformers; circuit components; electro-thermal equivalent circuit; distribution-class toroidal transformers; thermal behaviour

Subjects: Distribution networks; Power system management, operation and economics; Transformers and reactors

References

    1. 1)
      • 21. Arjona, M.A., Hernandez, C.: ‘Thermal analysis of a dry-type distribution power transformer using FEA’. Electrical Machines (ICEM), 2014 Int. Conf., 2014, pp. 22702274, doi: 10.1109/ICELMACH.2014.6960501.
    2. 2)
      • 20. Kalic, D., Radakovic, Z., Lazarevic, Z., et al: ‘On the determination of characteristic temperature in power oil transformers during transient states’, Arch. Elektrotech., 1993, 76, pp. 457468.
    3. 3)
      • 26. Jazebi, S., de León, F.: ‘Winding for low-voltage coils of distribution-class toroidal transformers’, Provisional Patent 62/206,785.
    4. 4)
      • 31. Jazebi, S., Doğan, R., Kovan, B., et al: ‘Reduction of inrush currents in toroidal transformers by sector winding design’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 67766780.
    5. 5)
      • 37. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: ‘Transport phenomena’ (Wiley, Hoboken, NJ, 2007, 2nd edn.).
    6. 6)
      • 39. Torabi, M.R., Kotas, P., Beckermann, C.: ‘Rayleigh number criterion for formation of A-segregates in steel casting and ingots’. Proc. 66th SFSA Technical and Operating Conf., Chicago, IL, 2012, Paper No. 5.4.
    7. 7)
      • 41. Kalac, S., Yener, Y.: ‘Convective heat transfer’ (CRC, Boca Raton, FL, 1995, 2nd edn.).
    8. 8)
      • 22. Hwang, C.C., Tang, P.H., Jiang, Y.H.: ‘Thermal analysis of high frequency transformers using finite elements coupled with temperature rise method’, IEE Proc., Electr. Power Appl., 2005, 152, pp. 832836.
    9. 9)
      • 33. IEEE Standard Test Code for Dry-Type Distribution and Power Transformers: C57.12.91–2011.
    10. 10)
      • 38. Martynenko, O.G., Khramtsov, P.P.: ‘Free convective heat transfer’ (Springer-Verlag, Berlin, Germany, 2005).
    11. 11)
      • 18. Susa, D., Lehtonen, M., Nordman, H.: ‘Dynamic thermal modeling of power transformers’, IEEE Trans. Power Deliv., 2005, 20, (1), pp. 197204.
    12. 12)
      • 32. Folvarcny, A., Marek, M.: ‘Experimental analysis of temperature influence on the parameters of the current load type toroidal transformers, compared with conventional types of transformers’. 11th Int. Sci. Conf. Electric Power Engineering, Brno, 2010, pp. 727731.
    13. 13)
      • 1. Susa, D., Lehtonen, M.: ‘Dynamic thermal modeling of power transformers: further development – part I’, IEEE. Trans. Power. Deliv., 2006, 21, (4), pp. 19611970.
    14. 14)
      • 8. Diaz-Aguiló, M., de León, F., Jazebi, S., et al: ‘Ladder-type soil model for dynamic thermal rating of underground power cables’, IEEE Power Energy Technol. Syst. J., 2014, 1, pp. 2130.
    15. 15)
      • 35. Incropera, F.P., Dewitt, D.P.: ‘Fundamentals of heat and mass transfer’ (Wiley, New York, NY, 2006, 6th edn.).
    16. 16)
      • 29. Gómez, P., de León, F., Hernández, I.: ‘Impulse response analysis of toroidal core distribution transformers for dielectric design’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 12311238.
    17. 17)
      • 12. Pierce, W.Z.: ‘Predicting liquid filled transformer loading capability’, IEEE Trans. Ind. Appl., 1994, 30, pp. 170178.
    18. 18)
      • 5. Silbernagl, M., Huber, M., Brandenberg, R.: ‘Improving accuracy and efficiency of start-up cost formulations in MIP unit commitment by modeling power plant temperatures’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 25782586.
    19. 19)
      • 10. IEEE Standard for General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers: C57.12.00-2010.
    20. 20)
      • 13. Bach, G.: ‘Über die Erwärmung des n-Körper-systems’, Arch. Elektrotech., 1933, 27, pp. 749760.
    21. 21)
      • 40. Taine, J., Petit, J.-P.: ‘Heat transfer’ (Prentice-Hall International Ltd., UK, 1993), p. 398.
    22. 22)
      • 19. Lindsay, J.F.: ‘Temperature rise of an oil-filled transformer with varying load’, IEEE Trans. Power Appl. Syst., 1984, PAS-103, (9), pp. 25302536.
    23. 23)
      • 27. de León, F., Purushothaman, S., Qaseer, L.: ‘Leakage inductance design of toroidal transformers by sector winding’, IEEE Trans. Power Electron., 2014, 29, pp. 473480.
    24. 24)
      • 17. Swift, G., Molinski, T.S., Lehn, W.: ‘A fundamental approach to transformer thermal modeling – part I: theory and equivalent circuit’, IEEE Trans. Power Deliv., 2001, 16, (2), pp. 171175.
    25. 25)
      • 24. Purushothaman, S., De León, F.: ‘Heat-transfer model for toroidal transformers’, IEEE Trans. Power Deliv., 2012, 27, (2), pp. 813820.
    26. 26)
      • 30. Doğan, R., Jazebi, S., de León, F.: ‘Investigation of transformer-based solutions for the reduction of inrush and phase-hop currents’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 35063516.
    27. 27)
      • 28. Hernández, I., de León, F., Gómez, P.: ‘Design formulas for the leakage inductance of toroidal distribution transformers’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 21972204.
    28. 28)
      • 36. IEC Standard-Electric Cables-Calculation of the Current Ratings: IEC Standard 60853-1, IEC60853-2, 1989.
    29. 29)
      • 15. Madžarević, V., Kapetanović, I., Tešanović, M., et al: ‘Different approach to thermal modeling of transformers – a comparison of methods’, Int. J. Energy Environ., 2011, 5, pp. 610617.
    30. 30)
      • 25. de León, F.: ‘Electrostatic shielding for transformersU.S. Patents, 2013.
    31. 31)
      • 14. Askari, M.T., Kadir, M.Z.A.A., Izadi, M.: ‘On the trend of improvement of thermal model for calculating the TOT and HST’, Prz. Elektrotech., 2012, 88, pp. 297301.
    32. 32)
      • 2. Barnes, P.R., Van Dyke, J.W., McConnell, B.W., et al: ‘The feasibility of replacing or upgrading utility distribution transformers during routine maintenance’, Power Systems Technology Program, Oak Ridge National Laboratory, RNL-6804/Rl, April1995.
    33. 33)
      • 7. Rakpenthai, C., Uatrongjit, S.: ‘Power system state and transmission line conductor temperature estimation’, IEEE Trans. Power Syst., 2017, 32, (3), pp. 18181827.
    34. 34)
      • 23. Plesca, A.T.: ‘Thermal analysis of toroidal transformers using finite element method’, Int. J. Math. Comput. Phys. Electr. Comput. Eng., 2013, 7, (4), pp. 590599.
    35. 35)
      • 3. Molinski, T.J., Swift, G.W.: ‘Reducing the life-cycle cost of power transformers’. CEPSI1 Proc., Kuala Lumpur, Malaysia, 21–25 October 1996, pp. 2125.
    36. 36)
      • 11. Alegi, G.L., Black, W.Z.: ‘Real-time thermal model for an oil immersed forced-air cooled transformer’, IEEE Trans. Power Deliv., 1990, 5, (2), pp. 991999.
    37. 37)
      • 9. IEEE Standard for Dry Type Transformer: C57.12.01-2005.
    38. 38)
      • 34. Anders, G.J.: ‘Rating of electric power cables’ (McGraw-Hill, New York, 1997).
    39. 39)
      • 4. Swift, G. W., Molinski, T.J.: ‘Power transformer life-cycle cost reduction’. MIPSYCON – Minnesota Power Systems Conf., Minneapolis, MN, 1–3 October 1996.
    40. 40)
      • 6. Jiang, J., Liang, Y., Chen, C., et al: ‘On dispatching line ampacities of power grids using weather-based conductor temperature forecasts’, IEEE Trans. Smart Grid, 2016, PP, (99), pp. 11, DOI: 10.1109/TSG.2016.2553964.
    41. 41)
      • 16. Azizian, D., Bigdeli, M., Fotuhi-Firuzabad, M.: ‘A dynamic thermal based reliability model of cast-resin dry-type transformers’. 2010 Int. Conf. Power System Technology, Hangzhou, China.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0360
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0360
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading