access icon free Transmission line fault classification using modified fuzzy Q learning

The authors propose an adaptive, self-learning fault classifier based on modified fuzzy Q learning (MFQL) for transmission lines. Proposed MFQL fault classifier is able to achieve very high classification accuracy with relatively small number of samples. The authors’ is a first attempt at designing a fault identifier using reinforcement learning for fault segregation in transmission lines. The authors’ identifier does not assume prior knowledge of transmission line model or target fault information. Raw voltage and current data (supply and load side) is processed using empirical mode decomposition to generate 13 intrinsic mode functions (IMFs’). Classifier employs the J48 algorithm to further prune these 13 IMF's to eight most relevant input variables, which serve as inputs to the MFQL fault classifier. The authors compare performance of the proposed MFQL classifier to other contemporary AI-based classifiers, e.g. neural networks and support vector machines. Simulation results and performance comparison against other AI-based classifiers elucidates that the proposed MFQL-based identifier achieves a significantly higher performance level and could serve as an important tool for transmission line fault diagnosis.

Inspec keywords: fuzzy set theory; power engineering computing; learning (artificial intelligence); support vector machines; fault diagnosis; power transmission faults; power transmission lines; neural nets

Other keywords: self-learning fault classifier; support vector machines; SVM; reinforcement learning; current data; MFQL classifier; fault diagnosis; empirical mode decomposition; transmission line fault classification; fault segregation; J48 algorithm; fault identifier; neural networks; modified fuzzy Q learning; raw voltage; IMF; contemporary AI-based classifiers; target fault information; intrinsic mode functions

Subjects: Power transmission, distribution and supply; Combinatorial mathematics; Power engineering computing; Combinatorial mathematics; Knowledge engineering techniques; Neural computing techniques

References

    1. 1)
      • 11. Bharata Reddy, M.J., Venkata Rajesh, D., Mohanta, D.K.: ‘Robust transmission line fault classification using wavelet multi-resolution analysis’, Comput. Electr. Eng., 2013, 39, pp. 12191247.
    2. 2)
      • 4. Das, B., Vittal Reddy, J.: ‘Fuzzy-logic-based fault classification scheme for digital distance protection’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 609616.
    3. 3)
      • 3. Jung, C.K., Lee, J.B., Wang, X.H., et al: ‘Wavelet based noise cancellation technique for fault location on underground power cables’, Electr. Power Syst. Res., 2007, 77, (10), pp. 13491362.
    4. 4)
      • 5. Ramesh Babu, N., Jagan Mohan, B.: ‘Fault classification in power systems using EMD and SVM’, Ain Shams Eng. J., September, 2017, 8, (2), pp. 103111.
    5. 5)
      • 1. Malik, H., Mishra, S.: ‘Artificial neural network and empirical mode decomposition based imbalance fault diagnosis of wind turbine using TurbSim, FAST and Simulink’, IET Renew. Power Gener., 2016, 11, (6), pp. 889902.
    6. 6)
      • 21. Watkins, C.J.C.H., Dayan, P.: ‘Q-learning’, Mach. Learn., 1992, 8, pp. 279292.
    7. 7)
      • 12. Reyes-Archundia, E., Moreno-Goytia, E.L., Guardado, J.L.: ‘An algorithm based on traveling waves for transmission line protection in a TCSC environment’, Electr. Power Energy Syst., 2014, 60, pp. 367377.
    8. 8)
      • 9. Upendar, J., Gupta, C.P., Singh, G.K.: ‘Statistical decision-tree based fault classification scheme for protection of power transmission lines’, Electr. Power Energy Syst., 2012, 36, pp. 112.
    9. 9)
      • 13. Sharma, R., Aggarwal, A., Malik, H.: ‘Selection of most relevant input parameters using weka for artificial neural network based transmission line fault diagnosis model’. Proc. of the Int. Conf. on Nanotechnology for Better Living, 2016, vol. 3, no. 1, p. 176, doi: 10.3850/978-981-09-7519-7nbl16-rps-176.
    10. 10)
      • 19. Busoniu, L., Babuska, R., De Schutter, B., et al: ‘Reinforcement learning and dynamic programming using function approximator’ (CRC Press, 2010).
    11. 11)
      • 16. Sharafi, A., Sanaye-Pasand, M., Jafarian, P.: ‘Ultra-high-speed protection of parallel transmission lines using current travelling waves’, IET Gener. Transm. Distrib., 2011, 5, (6), pp. 656666.
    12. 12)
      • 20. Quinlan, J.R.: ‘Improved use of continuous attributes in C4.5’, J Artif. Res, 1996, 4, pp. 7790. Available at https://www.jair.org/media/279/live-279-1538-jair.pdf./.
    13. 13)
      • 7. Shaik, A.G., Pulipaka, R.R.V.: ‘A new wavelet based fault detection, classification and location in transmission lines’, Electr. Power Energy Syst., 2015, 64, pp. 3540.
    14. 14)
      • 10. Lin, W.-M., Yang, C.-D., Lin, J.-H., et al: ‘A fault classification method by RBF neural network with OLS learning procedure’, IEEE Trans. Power Deliv., 2001, 16, (4), pp. 473477.
    15. 15)
      • 8. Swetapadma, A., Yadav, A.: ‘Directional relaying using support vector machine for double circuit transmission lines including cross-country and inter-circuit faults’, Electr. Power Energy Syst., 2016, 81, pp. 254264.
    16. 16)
      • 2. Aggarwal, R.K., Aslan, Y., Johns, A.T.: ‘New concept in fault location for overhead distribution systems using superimposed components’, IET Gener. Transm. Distrib., 1997, 144, (3), pp. 309316.
    17. 17)
      • 14. Girgis, A.A., Brown, R.G.: ‘Adaptive Kalman filtering in computer relaying: fault classification using voltage models’, IEEE Trans. Power Appar. Syst., 1985, 5, (5), pp. 11671177, doi: 10.1109/TPAS.1985.323469.
    18. 18)
      • 17. Wiering, M., van Otterlo, M.: ‘Reinforcement learning: state-of-the-art’. In ‘Adaptation, Learning and Optimization’ (Springer, Berlin, 2012), vol. 12.
    19. 19)
      • 6. Malik, H., Sharma, R.: ‘EMD and ANN based intelligent fault diagnosis model for transmission line’, J. Intell. Fuzzy Syst., 2017, 32, (4), pp. 30433050.
    20. 20)
      • 15. Parikh, U.B., Das, B., Maheshwari, R.: ‘Fault classification technique for series compensated transmission line using support vector machine’, Electr. Power Energy Syst., 2010, 32, pp. 629636.
    21. 21)
      • 18. Jouffe, L.: ‘Fuzzy inference system learning by reinforcement methods’, IEEE Trans. Syst. Man Cybernet. – C Appl. Rev., 1998, 28, (3), pp. 338355.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0331
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0331
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading