http://iet.metastore.ingenta.com
1887

Partial operating current characteristics to discriminate internal and external faults of differential protection zones during CT saturation

Partial operating current characteristics to discriminate internal and external faults of differential protection zones during CT saturation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

To protect transformers, transmission lines and busbar systems, low impedance current differential protection schemes based on percentage restraint characteristics are widely used in power systems. The main application issue of these schemes is mis-operation due to current transformer (CT) saturation during close-in external faults. A comprehensive fault discrimination algorithm is highly required for current differential protection schemes to overcome the CT saturation issue. The purpose of this study is to introduce a methodology based on partial operating current (POC) characteristics which discriminate internal and external faults of differential protection zones. The study includes the mathematical model of POC characteristics, a fault discriminating algorithm using POC features, and bus differential protection zone results. The results documented encompasses various possible short-circuit (fault) scenarios and indicate the capability of the proposed algorithm in discriminating internal and external faults under CT saturation conditions.

References

    1. 1)
      • M.J. Thompson .
        1. Thompson, M.J.: ‘Percentage restrained differential, percentage of what?64th Annual Conf. for Protective Relay Engineers, College Station, USA, April 2011, pp. 278289.
        . 64th Annual Conf. for Protective Relay Engineers , 278 - 289
    2. 2)
      • K. Behrendt , D. Costello , S.E. Zocholl .
        2. Behrendt, K., Costello, D., Zocholl, S.E.: ‘Considerations for using high-impedance or low-impedance relays for bus differential protection’. 63rd Annual Conf. for Protective Relay Engineers, College Station, USA, March 2010, pp. 115.
        . 63rd Annual Conf. for Protective Relay Engineers , 1 - 15
    3. 3)
      • A. Guzmán , S. Zocholl , G. Benmouyal .
        3. Guzmán, A., Zocholl, S., Benmouyal, G., et al: ‘Performance analysis of traditional and improved transformer differential protective relays’. 36th Annual Minnesota Power Systems Conf., Minnesota, USA, November 2000.
        . 36th Annual Minnesota Power Systems Conf.
    4. 4)
      • K. Narendra , D. Fedirchuk .
        4. Narendra, K., Fedirchuk, D.: ‘Secured busbar differential protection using a computationally efficient dot product technique’. Power System Protection and Automation Conf., New Delhi, India, December 2010.
        . Power System Protection and Automation Conf.
    5. 5)
      • L.F. Kennedy , C.D. Hayward .
        5. Kennedy, L.F., Hayward, C.D.: ‘Harmonic-current-restrained relays for differential protection’, Trans. AIEE, 1938, 57, (5), pp. 262266.
        . Trans. AIEE , 5 , 262 - 266
    6. 6)
      • J.B. Royle , A. Hill .
        6. Royle, J.B., Hill, A.: ‘Low impedance biased differential busbar protection for application to busbars of widely differing configuration’. IEE 4th Int. Conf. on Developments in Power System Protection, Edinburgh, UK, April 1989, pp. 4043.
        . IEE 4th Int. Conf. on Developments in Power System Protection , 40 - 43
    7. 7)
      • F. Andow , N. Suga , Y. Murakamy .
        7. Andow, F., Suga, N., Murakamy, Y., et al: ‘Microprocessor-based busbar protection relay’. IEE 5th Int. Conf. on Developments in Power System Protection, York, UK, March 1993, pp. 103106.
        . IEE 5th Int. Conf. on Developments in Power System Protection , 103 - 106
    8. 8)
      • C. Fernandez .
        8. Fernandez, C.: ‘An impedance-based CT saturation detection algorithm for bus-bar differential protection’, IEEE Trans. Power Deliv., 2001, 16, (4), pp. 468472.
        . IEEE Trans. Power Deliv. , 4 , 468 - 472
    9. 9)
      • Y.C. Kang , U.J. Lim , S.H. Kang .
        9. Kang, Y.C., Lim, U.J., Kang, S.H., et al: ‘A busbar differential protection relay suitable for use with measurement type current transformers’. IEEE Power Engineering Society General Meeting, San Francisco, USA, June 2005, p. 1088.
        . IEEE Power Engineering Society General Meeting , 1088
    10. 10)
      • H.S. Gill , T.S. Sidhu , M.S. Sachdev .
        10. Gill, H.S., Sidhu, T.S., Sachdev, M.S.: ‘Microprocessor-based busbar protection system’, IEE Proc., Gener. Transm. Distrib., 2000, 147, (4), pp. 252260.
        . IEE Proc., Gener. Transm. Distrib. , 4 , 252 - 260
    11. 11)
      • S.H. Horowitz , A.G. Phadke . (2008)
        11. Horowitz, S.H., Phadke, A.G.: ‘Power system relaying’ (Research Studies Press Limited, 2008, 3rd edn.).
        .
    12. 12)
      • B. Kasztenny , G. Brunello , L. Sevov .
        12. Kasztenny, B., Brunello, G., Sevov, L.: ‘Digital low impedance bus differential protection with reduced requirements for CTs’. IEEE Transmission and Distribution Conf. and Exposition, Atlanta, USA, November 2001, pp. 703708.
        . IEEE Transmission and Distribution Conf. and Exposition , 703 - 708
    13. 13)
      • S.A. Gafoor , N.R. Devi , P.V.R. Rao .
        13. Gafoor, S.A., Devi, N.R., Rao, P.V.R.: ‘A transient current based bus zone protection scheme using wavelet transform’. IEEE Conf. on Sustainable Energy Technologies, Singapore, Singapore, November 2008, pp. 11951199.
        . IEEE Conf. on Sustainable Energy Technologies , 1195 - 1199
    14. 14)
      • K. Narendra , D. Fedirchuk , N. Zhang .
        14. Narendra, K., Fedirchuk, D., Zhang, N.: ‘Differential rate of change method for busbar protection’. US Patent 20120182657A1, 2012.
        .
    15. 15)
      • R.A. Allah .
        15. Allah, R.A.: ‘Adaptive busbar differential relaying scheme during saturation period of current transformers based on alienation concept’, IET Gener. Transm. Distrib., 2016, 10, (15), pp. 38033815.
        . IET Gener. Transm. Distrib. , 15 , 3803 - 3815
    16. 16)
      • C.R. Paul . (2001)
        16. Paul, C.R.: ‘Fundamentals of electric circuit analysis’ (John Wiley and Sons, 2001).
        .
    17. 17)
      • M. Kaufman , W. Szwander .
        17. Kaufman, M., Szwander, W.: ‘Busbar protection: a critical review of methods and practice’, J. Inst. Electr. Eng., 1943, 90, (17), pp. 288303.
        . J. Inst. Electr. Eng. , 17 , 288 - 303
    18. 18)
      • B. Kasztenny , G. Benmouyal , H.J. Altuve .
        18. Kasztenny, B., Benmouyal, G., Altuve, H.J., et al: ‘Tutorial on operating characteristics of microprocessor-based multiterminal line current differential relays’. 38th Annual Western Protective Relay Conf., Washington, USA, October 2011.
        . 38th Annual Western Protective Relay Conf.
    19. 19)
      • J. Roberts , D. Tziouvaras , G. Benmouyal .
        19. Roberts, J., Tziouvaras, D., Benmouyal, G., et al: ‘The effect of multiprinciple line protection on dependability and security’. Southern African Power System Protection Conf., November 2000.
        . Southern African Power System Protection Conf.
    20. 20)
      • Y. Xue , B. Kasztenny , D. Taylor .
        20. Xue, Y., Kasztenny, B., Taylor, D., et al: ‘Line differential protection under unusual system conditions’. 67th Annual Georgia Tech Protective relaying Conf., Georgia, USA, May 2013.
        . 67th Annual Georgia Tech Protective relaying Conf.
    21. 21)
      • F. Gao , K. Strunz .
        21. Gao, F., Strunz, K.: ‘Modeling of constant distributed parameter transmission line for simulation of natural and envelope waveforms in power electric networks’. Proc. 37th Annual North American Power Symp., Iowa, USA, 2005, pp. 247252.
        . Proc. 37th Annual North American Power Symp. , 247 - 252
    22. 22)
      • M. Kezunovic , L. Kojovic , A. Abur .
        22. Kezunovic, M., Kojovic, L., Abur, A., et al: ‘Experimental evaluation of EMTP-based current transformer models for protective relay transient study’, IEEE Trans. Power Deliv., 1994, 9, (1), pp. 405413.
        . IEEE Trans. Power Deliv. , 1 , 405 - 413
    23. 23)
      • (2014)
        23. IEEE: ‘AC transmission line model parameter validation’ (IEEE Power and Energy Society, 2014), pp. 150.
        .
    24. 24)
      • k. Narendra , D. Fedirchuk , N. Zhang .
        24. Narendra, k., Fedirchuk, D., Zhang, N., et al: ‘Phase angle comparison and differential rate of change methods used for differential protection of busbars and transformers’. IEEE Electrical Power and Energy Conf., Winnipeg, Canada, October 2011.
        . IEEE Electrical Power and Energy Conf.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0283
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0283
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address