Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free A compositive control method of low-voltage ride through for PMSG-based wind turbine generator system

Converting the surplus power into rotor kinetic energy by changing the control functions of machine side converter (MSC) and grid side converter (GSC) is considered to be an efficient way for permanent magnet synchronous generator (PMSG)-based wind turbine generator system (WTGS) to accomplish low-voltage ride through (LVRT) without additional hardware components. However, because of the time delay of grid fault detection and the control system inertia, the dc-link capacitor may still be subjected to overvoltage in the early tens of milliseconds after a grid fault happens. This study proposes a compositive control method of LVRT for PMSG-based WTGS, in which the surplus power during LVRT is converted into rotor kinetic energy by controlling the electrical power of the PMSG according to the grid-connected power of the GSC, and a crowbar circuit is reserved to consume the surplus power before MSC reacts to the grid fault. The proposed method does not change the control functions of MSC and GSC, and the related control parameters resetting can be avoid. Besides, it can also provide reactive power support to assist the grid voltage recovery. Simulations and experiments proved the proposed method to be feasible and effective.

References

    1. 1)
      • 15. Xu, G., Xu, L., Morrow, J.: ‘Power oscillation damping using wind turbines with energy storage systems’, IET Renew. Power Gener., 2013, 7, (5), pp. 449457.
    2. 2)
      • 16. Nguyen, T.H.., Lee, D.C..: ‘Advanced fault ride-Through technique for PMSG wind turbine systems using line-Side converter as STATCOM’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 28422850.
    3. 3)
      • 9. Alepuz, S., Busquets-Monge, S., Bordonau, J., et al: ‘Control strategies based on symmetrical components for grid-connected converters under voltage dips’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 21622173.
    4. 4)
      • 26. Zhang, Y., Chen, M.L.., Xie, Z., et al: ‘An experimental system for LVRT of direct-drive PMSG wind generation system’. Proc. Int. Conf. Power Electronics and Motion Control, Hefei, China, June 2016, pp. 14521456.
    5. 5)
      • 25. Ackermann, T: ‘Wing power in power systems’ (Wiley Press, 2012, 2nd edn. 2006).
    6. 6)
      • 1. GWEC.: ‘Global wind report annual market update 2015’ (Publisher, 2016), pp. 15.
    7. 7)
      • 8. Conroy, J., Watson, R.: ‘Aggregate modelling of wind farms containing full-converter wind turbine generators with permanent magnet synchronous machines: transient stability studies’, IET Renew. Power Gener., 2009, 3, (1), pp. 3952.
    8. 8)
      • 22. Li, S., Haskew, T.A.., Swatloski, R.P..: ‘Optimal and direct-Current vector control of direct-Driven PMSG wind turbines’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 23252337.
    9. 9)
      • 10. Yassin, H.M.., Hassan, H., Hallou, M.M., et al: ‘Enhancement low-voltage ride through capability of permanent magnet synchronous generator-based wind turbines using interval type-2 fuzzy control’, IET Renew. Power Gener., 2016, 10, (3), pp. 339348.
    10. 10)
      • 17. Hansen, A.D., Michalke, G.: ‘Multi-pole permanent magnet synchronous generator wind turbines’ grid support capability in uninterrupted operation during grid faults’, IET Renew. Power Gener., 2009, 3, (3), pp. 333348.
    11. 11)
      • 12. Conroy, J.F.., Watson, R.: ‘Low-voltage ride-through of a full converter wind turbine with permanent magnet generator’, IET Renew. Power Gener., 2007, 1, (3), pp. 182189.
    12. 12)
      • 5. Arani, M.F.M, Mohamed, Y.A.R.I.: ‘Assessment and enhancement of a full-scale PMSG-based wind power generator performance under faults’, IEEE Trans. Energy Convers., 2016, 31, (2), pp. 728739.
    13. 13)
      • 19. Kim, K.H.., Jeung, Y.C.., Lee, D.C.., et al: ‘LVRT scheme of PMSG wind power system based on feedback linearization’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 23762384.
    14. 14)
      • 6. Muyeen, S.M.., Takahashi, R., Murata, T., et al: ‘A variable speed wind turbine control strategy to meet wind farm grid code requirements’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 331340.
    15. 15)
      • 21. Mauricio, J.M.., Marano, A., Gomez-Exposito, A., et al: ‘Frequency regulation contribution through variable-speed wind energy conversion systems’, IEEE Trans. Power Syst., 2009, 24, (1), pp. 173180.
    16. 16)
      • 24. GB/T 19963–2011: ‘Standard on Connecting Wind Farms to Power System’, 2011.
    17. 17)
      • 13. Camacho, A., Castilla, M., Miret, J., et al: ‘Active and reactive power strategies with peak current limitation for distributed generation inverters during unbalanced grid faults’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 15151525.
    18. 18)
      • 20. Wang, Y., Meng, J., Zhang, X., et al: ‘Control of PMSG-based wind turbines for system inertial response and power oscillation damping’, IEEE Trans. Sustain. Energy, 2015, 6, (2), pp. 565574.
    19. 19)
      • 18. Yuan, X., Wang, F., Boroyevich, D., et al: ‘DC-link voltage control of a full power converter for wind generator operating in weak grid systems’, IEEE Trans. Power Electron., 2009, 24, (9), pp. 21782192.
    20. 20)
      • 7. Enamul Haque, M., Saw, Y.C., Chowdhury, M.M..: ‘Advanced control scheme for an IPM synchronous generator-based gearless variable speed wind turbine’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 354362.
    21. 21)
      • 11. Li, W., Abbey, C., Joos, G.: ‘Control and performance of wind turbine generators based on permanent magnet synchronous machines feeding a diode rectifier’. Proc. Int. Conf. Power Electronics Specialists, Jeju, Korea, June 2006, pp. 16.
    22. 22)
      • 2. Tsili, M., Papathanassiou, S.: ‘A review of grid code technical requirements for wind farms’, IET Renew. Power Gener., 2009, 3, (3), pp. 308332.
    23. 23)
      • 3. Yang, Y., Enjeti, P., Blaabjerg, F.: ‘Wide-scale adoption of photovoltaic energy: grid code modifications are explored in the distribution grid’, IEEE Ind. Appl. Mag., 2015, 21, (5), pp. 2131.
    24. 24)
      • 23. Lee, G.M., Lee, D.C., Seok, J.K.: ‘Control of series active power filters compensating for source voltage unbalance and current harmonics’, IEEE Trans. Ind. Appl., 2004, 51, (1), pp. 132139.
    25. 25)
      • 4. Chinchilla, M., Arnaltes, S., Burgos, J.C..: ‘Control of permanent magnet generators applied to variable-speed wind-energy systems connected to the grid’, IEEE Trans. Energy Convers., 2006, 21, (1), pp. 130135.
    26. 26)
      • 14. Chen, S.S.., Wang, L., Lee, W.I.., et al: ‘Power flow control and damping enhancement of a large wind farm using a superconducting magnetic energy storage unit’, IET Renew. Power Gener., 2009, 3, (1), pp. 2338.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0270
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0270
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address