http://iet.metastore.ingenta.com
1887

Optimal operation of aggregated electric vehicle charging stations coupled with energy storage

Optimal operation of aggregated electric vehicle charging stations coupled with energy storage

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Charging stations are the basic infrastructure for accommodating the energy needs of electric vehicles (EVs). Companies are expected to invest in these charging stations by installing them at locations with a dense concentration of vehicles, such as parking places, commercial centres, and workplaces. In order for investors in EV charging stations to maximise their profits and mitigate the impact on the power grid, these stations would benefit from coupling with an energy storage system (ESS). ESS would be used to arbitrage energy and to balance out the time-variant and uncertain EV energy demand. This study proposes a framework to optimise the offering/bidding strategy of an ensemble of charging stations coupled with ESS in the day-ahead electricity market. The proposed framework accounts for degradation of the ESS, robust scheduling against price uncertainty, as well as stochastic energy demand from EVs. The results show the viability of the proposed framework in providing cost savings to an ensemble of EV charging stations.

References

    1. 1)
      • 1. Global EV outlook: understanding the electric vehicle landscape to 2020’. Report, International Energy Agency, 2013.
    2. 2)
      • 2. Scholer, R., McGlynn, H.: ‘Smart charging standards for plug-in electric vehicles’. SAE Technical Paper 2014-01-1823, 2014.
    3. 3)
      • 3. Plug-in electric vehicle handbook for public charging station hosts’. Report, U.S. Department of Energy: Energy Efficiency & Renewable Energy, 2012.
    4. 4)
      • 4. Demand response frequently asked questions – CAISO’, 2016. Available at goo.gl/vdmpE3.
    5. 5)
      • 5. Load participation in the ercot nodal market’. Report, ERCOT, 2016.
    6. 6)
      • 6. Vayá, M.G., Andersson, G.: ‘Optimal bidding strategy of a plug-in electric vehicle aggregator in day-ahead electricity markets under uncertainty’, IEEE Trans. Power Syst., 2015, 30, (5), pp. 23752385.
    7. 7)
      • 7. Sarker, M.R., Ortega-Vazquez, M.A., Kirschen, D.S.: ‘Optimal coordination and scheduling of demand response via monetary incentives’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 13411352.
    8. 8)
      • 8. Sarker, M., Dvorkin, Y., Ortega-Vazquez, M.: ‘Optimal participation of an electric vehicle aggregator in day-ahead energy and reserve markets’, IEEE Trans. Power Syst., 2015, PP, (99), pp. 110.
    9. 9)
      • 9. Ortega-Vazquez, M.A., Bouffard, F., Silva, V.: ‘Electric vehicle aggregator/system operator coordination for charging scheduling and services procurement’, IEEE Trans. Power Syst., 2013, 2, (2), pp. 18061815.
    10. 10)
      • 10. Calvillo, C., Sánchez-Miralles, A., Villar, J., et al: ‘Optimal planning and operation of aggregated distributed energy resources with market participation’, Appl. Energy, 2016, 182, pp. 340357. Available at http://www.sciencedirect.com/science/article/pii/S030626191631217X.
    11. 11)
      • 11. Shafie-khah, M., Heydarian-Forushani, E., Golshan, M., et al: ‘Optimal trading of plug-in electric vehicle aggregation agents in a market environment for sustainability’, Appl. Energy, 2016, 162, pp. 601612.
    12. 12)
      • 12. Ev everywhere: workplace charging challenge progress update 2014’. Report, U.S. Department of Energy: Energy Efficiency & Renewable Energy, 2014.
    13. 13)
      • 13. Fan, P., Sainbayar, B., Ren, S.: ‘Operation analysis of fast charging stations with energy demand control of electric vehicles’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 18191826.
    14. 14)
      • 14. You, P., Yang, Z., Chow, M.Y., et al: ‘Optimal cooperative charging strategy for a smart charging station of electric vehicles’, IEEE Trans. Power Syst., 2016, 31, (4), pp. 29462956.
    15. 15)
      • 15. Hafez, O., Bhattacharya, K.: ‘Integrating ev charging stations as smart loads for demand response provisions in distribution systems’, IEEE Trans. Smart Grid, 2016, PP, (99), pp. 11.
    16. 16)
      • 16. Negarestani, S., Fotuhi-Firuzabad, M., Rastegar, M., et al: ‘Optimal sizing of storage system in a fast charging station for plug-in hybrid electric vehicles’, IEEE Trans. Transp. Electrification, 2016, PP, (99), pp. 11.
    17. 17)
      • 17. Machiels, N., Leemput, N., Geth, F., et al: ‘Design criteria for electric vehicle fast charge infrastructure based on Flemish mobility behavior’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 320327.
    18. 18)
      • 18. Bayram, I.S., Michailidis, G., Devetsikiotis, M., et al: ‘Electric power allocation in a network of fast charging stations’, IEEE J. Sel. Areas Commun., 2013, 31, (7), pp. 12351246.
    19. 19)
      • 19. Ding, H., Hu, Z., Song, Y.: ‘Value of the energy storage system in an electric bus fast charging station’, Appl. Energy, 2015, 157, pp. 630639.
    20. 20)
      • 20. Shafie-khah, M., Heydarian-Forushani, E., Osório, G.J., et al: ‘Optimal behavior of electric vehicle parking lots as demand response aggregation agents’, IEEE Trans. Smart Grid, 2016, 7, (6), pp. 26542665.
    21. 21)
      • 21. Bayram, I.S., Abdallah, M., Tajer, A., et al: ‘A stochastic sizing approach for sharing-based energy storage applications’, IEEE Trans. Smart Grid, 2017, 8, (3), pp. 10751084.
    22. 22)
      • 22. Ma, Z., Zou, S., Liu, X.: ‘A distributed charging coordination for large-scale plug-in electric vehicles considering battery degradation cost’, IEEE Trans. Control Syst. Technol., 2015, 23, (5), pp. 20442052.
    23. 23)
      • 23. Hoke, A., Brissette, A., Smith, K., et al: ‘Accounting for lithiumion battery degradation in electric vehicle charging optimization’, IEEE J. Emerg. Sel. Top. Power Electron., 2014, 2, (3), pp. 691700.
    24. 24)
      • 24. A practical battery wear model for electric vehicle charging applications’, Appl. Energy, 2014, 113, pp. 11001108.
    25. 25)
      • 25. General electric – electric vehicle charging stations’. Available at http://www.geindustrial.com/products/electric-vehicle-charging-stations.
    26. 26)
      • 26. Chargepoint’. Available at http://www.chargepoint.com.
    27. 27)
      • 27. Tesla motors supercharger stations’. Available at http://www.teslamotors.com/supercharger.
    28. 28)
      • 28. Ortega-Vazquez, M.A.: ‘Optimal scheduling of electric vehicle charging and vehicle-to-grid services at household level including battery degradation and price uncertainty’, IET Gener. Transm. Distrib., 2014, 8, (6), pp. 10071016.
    29. 29)
      • 29. Conejo, A.J., Carrión, M., Morales, J.M.: ‘Decision making under uncertainty in electricity markets’, vol. 1 (Springer, New York, 2010).
    30. 30)
      • 30. Bertsimas, D., Sim, M.: ‘The price of robustness’, Oper. Res., 2004, 52, (1), pp. 3553.
    31. 31)
      • 31. Soyster, A.L.: ‘Convex programming with set-inclusive constraints and applications to inexact linear programming’, Oper. Res., 1973, 21, (5), pp. 11541157.
    32. 32)
      • 32. Carnegie, R., Gotham, D., Nderitu, D., et al: ‘Utility scale energy storage systems: benefits, applications, and technologies’. Report, State Utility Forecasting Group, 2013.
    33. 33)
      • 33. Amp20 lithium ion prismatic cell’. Available at http://www.a123systems.com/prismatic-cell-amp20.htm.
    34. 34)
      • 34. Guéret, C., Marc, S., Prins, C.: ‘Applications of optimization with Xpress-MP’, vol. 1 (Dash Optimization Ltd., Genova, 2005).
    35. 35)
      • 35. Almassalkhi, M., Dvorkin, Y., Marley, J., et al: ‘Incorporating storage as a flexible transmission asset in power system operation procedure’. 2016 Power Systems Computation Conf. (PSCC), June 2016, pp. 17.
    36. 36)
      • 36. Koutsopoulos, I., Hatzi, V., Tassiulas, L.: ‘Optimal energy storage control policies for the smart power grid’. 2011 IEEE Int. Conf. Smart Grid Communications (SmartGridComm), October 2011, pp. 475480.
    37. 37)
      • 37. Marley, J.F., Hiskens, I.A.: ‘Multi-period ac-qp optimal power flow including storage’. 2016 Power Systems Computation Conf. (PSCC), June 2016, pp. 17.
    38. 38)
      • 38. Sun, K., Sarker, M., Ortega-Vazquez, M.: ‘Statistical characterization of electric vehicle charging in different locations of the grid’. 2015 IEEE Power Energy Society General Meeting, July 2015, pp. 15.
    39. 39)
      • 39. National household travel survey (nhts) data’. Report, NHTS, 2009. Available at www.nhts.ornl.gov.
    40. 40)
      • 40. Bayram, I.S., Zamani, V., Hanna, R., et al: ‘On the evaluation of plug-in electric vehicle data of a campus charging network’. 2016 IEEE Int. Energy Conf. (ENERGYCON), April 2016, pp. 16.
    41. 41)
      • 41. Kaufman, L., Rousseeuw, P.J.: ‘Clustering by means of medoids’, Delft University of Technology: reports of the Faculty of Technical Mathematics and Informatics (Faculty of Mathematics and InformaticsDelft, The Netherlands, 1987).
    42. 42)
      • 42. Doughty, D.H., Pesaran, A.: ‘Vehicle battery safety roadmap guidance’. Report, National Renewable Energy Laboratory, 2012.
    43. 43)
      • 43. Levelized cost of energy storage analysis’. Report, Lazard, 2015. Available at http://www.lazard.com/media/2391/lazards-levelized-cost-of-storage-analysis-10.pdf.
    44. 44)
      • 44. D'Aprile, P., Newman, J., Pinner, D.: ‘The new economics of energy storage’. Available at http://www.mckinsey.com/business-functions/sustainabilityand-resource-productivity/our-insights/the-new-economics-of-energy-storage.
    45. 45)
      • 45. Ercot day-ahead market’. Available at www.ercot.com/mktinfo/dam.
    46. 46)
      • 46. Gams – a user's guide’. Available at www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf.
    47. 47)
      • 47. User's manual for cplex’. Report, IBM, 2009.
    48. 48)
      • 48. Hahn, G.J., Shapiro, S.S.: ‘Statistical models in engineering’ (Wiley, New York, 1967).
    49. 49)
      • 49. Mateo, C., Reneses, J., Rodriguez-Calvo, A., et alCost-benefit analysis of battery storage in medium-voltage distribution networks’, IET Gener. Transm. Distrib., 2016, 10, (3), pp. 815821.
    50. 50)
      • 50. Dvorkin, Y., Fernández-Blanco, R., Kirschen, D.S., et al: ‘Ensuring profitability of energy storage’, IEEE Trans. Power Syst., 2017, 32, (1), pp. 611623.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0134
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0134
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address