Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Frequency evaluation of the Nordic power system using PMU measurements

This study investigates the frequency behaviour in the Nordic power system (NPS) utilising phasor measurement units (PMUs) from different locations in the system. Different metrics are selected or proposed to quantify the system frequency response in case of major disturbances and of daily normal operations. Based on the collected PMU data, there are on average 17.5 major, generator disconnection related, disturbances per year. The maximum absolute rate of change of frequency exceeds 0.1 Hz/s for 20% of these disturbances. The average frequency nadir falls to 49.7 Hz, and the average time to nadir is about 8.7 s. If wind turbines were to be requested to provide inertia support to the system, these four metrics indicate how often, how fast, for how much and for how long the wind turbines should act. Moreover, during daily normal operations, the system has in general longer duration of over-frequency (f > 50.1 Hz) than under-frequency (f < 49.9 Hz). These frequency deviations are observed to occur around the hourly clearing of the Nord Pool Spot market and, especially during the hours between 05:00 and 08:00. In order to improve the frequency quality, the Nordic system operators tested and implemented an automatic frequency restoration reserve (aFRR) in addition to the existing manual one. Based on a frequency evaluation, this aFRR is needed most during 4:45–08:15 and 22:00–23:30 o'clock in 2012 in the NPS.

References

    1. 1)
      • 15. Ullah, N., Thiringer, T., Karlsson, D.: ‘Temporary primary frequency control support by variable speed wind turbines; potential and applications’, IEEE Trans. Power Syst., 2008, 23, (2), pp. 601612, doi: 10.1109/TPWRS.2008.920076.
    2. 2)
      • 16. Persson, M., Chen, P., Carlson, O.: ‘Frequency support by wind farms in islanded power systems with high wind power penetration’. IEEE PowerTech (POWERTECH), 2013, Grenoble, 2013, pp. 16, doi: 10.1109/PTC.2013.6652361.
    3. 3)
      • 25. Fisher, R.A.S.: ‘Statistical methods for research workers’ (Oliver and Boyd, Edinburgh, 1958, 13th edn.).
    4. 4)
      • 26. Nord Pool Spot, No. 18/2012 – implementation of load frequency control in the Nordic synchronous system, May 2012.
    5. 5)
      • 24. Morren, J., De Haan, S.W., Kling, W.L., et al: ‘Wind turbines emulating inertia and supporting primary frequency control’, IEEE Trans. Power Syst., 2006, 21, (1), pp. 433434.
    6. 6)
      • 10. Li, Z., Samuelsson, O., Garcia-Valle, R.: ‘Frequency deviations and generation scheduling in the Nordic system’. IEEE PowerTech, 2011, Trondheim, 2011, pp. 16, doi: 10.1109/PTC.2011.6019176.
    7. 7)
      • 20. Persson, M.: ‘Frequency response by wind farms in islanded power systems with high wind power penetration’ (Department of Energy and Environment, Electric Power Engineering, Chalmers University of Technology, 2015), p. 118.
    8. 8)
      • 8. Ørum, E., Kuivaniemi, M., Laasonen, M., et al: ‘Future system inertia’, ENTSO-E.
    9. 9)
      • 2. ‘ENTSO-E’, Introduction in Automatic FRR – 17 October 2012.
    10. 10)
      • 7. Du, P., Makarov, Y.: ‘Using disturbance data to monitor primary frequency response for power system interconnections’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 14311432.
    11. 11)
      • 23. Ekanayake, J., Jenkins, N.: ‘Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency’, IEEE Trans. Energy Convers., 2004, 19, (4), pp. 800802, doi: 10.1109/TEC.2004.827712.
    12. 12)
      • 18. Larsson, Å., Larsson, R.: ‘Anslutning av större produktions anläggning till eläntet’, Elforsk, 2006, 06, (10), pp. 3940.
    13. 13)
      • 6. Chassin, D.P., Huang, Z., Donnelly, M.K., et al: ‘Estimation of WECC system inertia using observed frequency transients’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 11901192.
    14. 14)
      • 9. Xu, Z., Ostergaard, J., Togeby, M., et al: ‘Evaluating frequency quality of Nordic system using PMU data’. IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008, 2008, pp. 15, doi: 10.1109/PES.2008.4596468.
    15. 15)
      • 19. Kook, K., Liu, Y., Bang, M.J.: ‘Global behaviour of power system frequency in Korean power system for the application of frequency monitoring network’, IET Gener. Transm. Distrib., 2008, 2, (5), pp. 764774, doi: 10.1049/iet-gtd:20070111.
    16. 16)
      • 21. Vikesjö, J., Messing, L.: ‘Wind power and fault clearance’, Elforsk, 2011, 10, (99), pp. 99101.
    17. 17)
      • 13. Zhong, Z.: ‘Power systems frequency dynamic monitoring system design and applications’. PhD thesis, Virginia Polytechnic Institute and State University, 2005.
    18. 18)
      • 12. ENTSO-E: ‘Deterministic frequency deviations root causes and proposals for potential solutions’, December 2011.
    19. 19)
      • 5. Sharma, S., Huang, S.H., Sarma, N.: ‘System inertial frequency response estimation and impact of renewable resources in ercot interconnection’. 2011 IEEE Power and Energy Society General Meeting, 2011, pp. 16, doi: 10.1109/PES.2011.6038993.
    20. 20)
      • 4. Eto, J.H.: ‘Use of frequency response metrics to assess the planning and operating requirements for reliable integration of variable renewable generation’ (Lawrence Berkeley National Laboratory).
    21. 21)
      • 27. Nord Pool Spot, No. 26/2013 – update on contracted aFRR capacity in the Nordic synchronous system, May 2013.
    22. 22)
      • 17. Delille, G., Francois, B., Malarange, G.: ‘Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system's inertia’, IEEE Trans. Sustain. Energy, 2012, 3, (4), pp. 931939, doi: 10.1109/TSTE.2012.2205025.
    23. 23)
      • 14. IEEE Standard for Synchrophasor Measurements for Power Systems, IEEE Std C37.118.1-2011 (revision of IEEE Std C37.118-2005) (2011) 1–61, doi: 10.1109/IEEESTD.2011.6111219.
    24. 24)
      • 28. Nord Pool Spot, No. 19/2014 – update on exchange information No. 08/2014 (2014 aFRR contracting), April 2014.
    25. 25)
      • 22. Fortum, Tekniska krav vid anslutning av vindkraftverk till 10/ 20/ 30 kv nätet (rn2105-10122), 2011.
    26. 26)
      • 1. Ramtharan, G., Ekanayake, J., Jenkins, N.: ‘Frequency support from doubly fed induction generator wind turbines’, IET Renew. Power Gener., 2007, 1, (1), pp. 39, doi: 10.1049/ietrpg:20060019.
    27. 27)
      • 11. Kirby, B.J., Dyer, J., Martinez, C., et al: ‘Frequency control concerns in the North American electric power system’, 2003.
    28. 28)
      • 3. Creighton, K., McClure, M., Skillen, R., et al: ‘Increased wind generation in Ireland and northern Ireland and the impact on rate of change of frequency’. Proc. of the 12th Wind Integration Workshop, 2013.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0095
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0095
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address