http://iet.metastore.ingenta.com
1887

Estimation of zero sequence parameters of mutually coupled transmission lines from synchrophasor measurements

Estimation of zero sequence parameters of mutually coupled transmission lines from synchrophasor measurements

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors consider the problem of estimating zero sequence parameters of a transmission line using synchrophasor data. When a set of three-phase transmission lines share, partial or complete, right of way, then their zero sequence models exhibit mutual coupling. As such the zero sequence parameters cannot be estimated by linear least squares or total least squares (TLS) technique which are the preferred methods when dealing with the positive sequence line parameter estimation problem. Further, method design has to factor the constraint of a sparse data set when dealing with zero sequence phasors. Therefore, the authors propose orthogonal distance regression approach for solving the zero sequence parameter estimation problem. This generalises the method of TLS to the non-linear parameter estimation problem considering noise in both the voltage and current synchrophasor measurements. Extensive case studies and comparative evaluations are presented to demonstrate the efficacy of the proposed approach.

References

    1. 1)
      • P.M. Anderson . (1999)
        1. Anderson, P.M.: ‘Power system protection’ (IEEE Press Power Engineering Series, NJ, USA, 1999).
        .
    2. 2)
      • F. Calero . (2008)
        2. Calero, F.: ‘Mutual impedance in parallel lines – protective relaying and fault location considerations’ (Schweitzer Engineering Laboratories Inc., 2008).
        .
    3. 3)
      • 3. Prepared by working group D6, AC Transmission Line Model Parameter Validation, A report to the Line Protection Subcommittee of the Power System Relay Committee of the IEEE Power & Energy Society, September 2014..
        .
    4. 4)
      • L. Schulz , S. VanSlyck , S.H. Horowitz .
        4. Schulz, L., VanSlyck, S., Horowitz, S.H.: ‘Application of fast phasor measurements on utility system’. IEEE Summer Meeting, Chapter 2747, 1989.
        . IEEE Summer Meeting
    5. 5)
      • R.E. Wilson , A. Zevenbergen , D.L. Mah .
        5. Wilson, R.E., Zevenbergen, A., Mah, D.L., et al: ‘Calculation of transmission line parameters from synchronized measurements’, Electr. Mach. Power Syst., 1999, 27, pp. 12691278.
        . Electr. Mach. Power Syst. , 1269 - 1278
    6. 6)
      • Y. Liao , M. Kezunovic .
        6. Liao, Y., Kezunovic, M.: ‘Online optimal transmission line parameter estimation for relaying applications’, IEEE Trans. Power Deliv., 2009, 24, (1), pp. 96102.
        . IEEE Trans. Power Deliv. , 1 , 96 - 102
    7. 7)
      • K. Dasgupta , S.A. Soman .
        7. Dasgupta, K., Soman, S.A.: ‘Line parameter estimation using phasor measurements by the total least squares approach’. IEEE PES General Meeting, Vancouver, Canada, July, 2013.
        . IEEE PES General Meeting
    8. 8)
      • I.-D. Kim , R.K. Agarwal .
        8. Kim, I.-D., Agarwal, R.K.: ‘A study on the on-line measurement of transmission line impedances for improved relaying protection’, Electr. Power Energy Syst., 2006, 28, pp. 359366.
        . Electr. Power Energy Syst. , 359 - 366
    9. 9)
      • Z. Xue , Z. Liang .
        9. Xue, Z., Liang, Z.: ‘An on-line measurement method of zero-sequence parameters of double-line on the same tower based on WAMS’. Proc. IEEE APPEEC, Wuhan, China, March 2009, pp. 14.
        . Proc. IEEE APPEEC , 1 - 4
    10. 10)
      • Z. Hu , Y. Chen .
        10. Hu, Z., Chen, Y.: ‘New method of live line measuring the inductance parameters of transmission lines based on GPS technology’, IEEE Trans. Power Deliv., 2008, 23, (3), pp. 12881295.
        . IEEE Trans. Power Deliv. , 3 , 1288 - 1295
    11. 11)
      • Z. Hu , M. Xiong , C. Li .
        11. Hu, Z., Xiong, M., Li, C., et al: ‘New approach for precisely measuring the zero-sequence parameters of long-distance double-circuit transmission lines’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 16271635.
        . IEEE Trans. Power Deliv. , 4 , 1627 - 1635
    12. 12)
      • H.K. Karegar , B. Alinejad .
        12. Karegar, H.K., Alinejad, B.: ‘On-line transmission line zero sequence impedance estimation using phasor measurement units’. 22nd Australasian Universities Power Engineering Conf. (AUPEC), 26–29 September 2012.
        . 22nd Australasian Universities Power Engineering Conf. (AUPEC)
    13. 13)
      • G.H. Golub , C.F. Van Loan .
        13. Golub, G.H., Van Loan, C.F.: ‘An analysis of the total least squares problem’, SIAM J. Numer. Anal., 1980, 17, pp. 883893.
        . SIAM J. Numer. Anal. , 883 - 893
    14. 14)
      • P.T. Boggs , R.H. Byrd , R.B. Schnabel .
        14. Boggs, P.T., Byrd, R.H., Schnabel, R.B.: ‘A stable and efficient algorithm for nonlinear orthogonal distance regression’, SIAM J. Sci. Stat. Comput., 1987, 8, (6), pp. 10521078.
        . SIAM J. Sci. Stat. Comput. , 6 , 1052 - 1078
    15. 15)
      • A.J. Wood , B.F. Wollenberg . (1996)
        15. Wood, A.J., Wollenberg, B.F.: ‘Power generation operation and control’ (John Wiley & Sons, New York, 1996).
        .
    16. 16)
      • K. Madsen , H.B. Nielsen , O. Tingleff . (2004)
        16. Madsen, K., Nielsen, H.B., Tingleff, O.: ‘Methods for non-linear least squares problems’ (Informatics and Mathematical Modelling, DTU, Denmark, 2004, 2nd edn.).
        .
    17. 17)
      • Y. Bard . (1974)
        17. Bard, Y.: ‘Nonlinear parameter estimation’ (Academic Press, New York, 1974).
        .
    18. 18)
      • J.J. More .
        18. More, J.J.: ‘The Levenberg–Marquardt algorithm: implementation and theory’. Conf. Numerical Analysis, University of Dundee, Scotland, 28 June–1 July 1977.
        . Conf. Numerical Analysis, University of Dundee
    19. 19)
      • G.H. Golub , C.F. Van Loan . (2007)
        19. Golub, G.H., Van Loan, C.F.: ‘Matrix computations’ (Hindustan Book Agency, New Delhi, India, 2007, 3rd edn.).
        .
    20. 20)
      • K.R. Padiyar . (2008)
        20. Padiyar, K.R.: ‘Power system dynamics’ (BS Publications, India, 2008, 2nd edn).
        .
    21. 21)
      • 21. ‘Alternate Transients Program’. Available at http://www.ece.mtu.edu/atp/.
        .
    22. 22)
      • A.G. Phadke , J.S. Thorp . (2008)
        22. Phadke, A.G., Thorp, J.S.: ‘Synchronized phasor measurements and their applications’ (Springer Science, New York, 2008).
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0057
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0057
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address