Real-time harmonics estimation in power systems using a novel hybrid algorithm

Real-time harmonics estimation in power systems using a novel hybrid algorithm

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new hybrid algorithm to estimate the harmonic parameters of a distorted signal in power systems. The parameters to be estimated are amplitudes and phases of harmonic components according to the voltage/currents samples. The proposed algorithm is based on combination of the recursive least squares (RLS) and iterated extended Kalman filter (IEKF) techniques. The RLS–IEKF algorithm decomposes the problem into linear amplitude estimation and non-linear phase estimation leading to extracting the intended state vector in online mode and intensive noise presence. As well, RLS–IEKF estimates dynamic parameters using tuning factor which controls the impact of measurement on estimation process. Simulation results obtained by MATLAB show the accuracy and speed of convergence in comparison with that of conventional discrete Fourier transform and ensemble Kalman filter. For further validation, the proposed algorithm is implemented by C++ code and is applied to real switching current data. The real-time implementation of RLS–IEKF in a simple laboratory setup using PC/104 computer set and dedicated hardware shows its satisfactory performance for practical power quality and protection cases.


    1. 1)
      • 1. Arrillaga, J., Smith, B.C., Watson, N.R., et al: ‘Power system harmonic analysis’ (John Wiley & Sons, New York, USA, 1997).
    2. 2)
      • 2. Rodriguez-Guerrero, M.A., Lopez-Padilla, R.C., Osornio-Rios, R.A., et al: ‘A novel methodology for modeling waveforms for power quality disturbance analysis’, Electr. Power Syst. Res., 2017, 143, pp. 1424.
    3. 3)
      • 3. Chen, C.I., Chen, Y.C.: ‘Comparative study of harmonic and interharmonic estimation methods for stationary and time-varying signals’, IEEE Trans. Ind. Electron., 2014, 61, pp. 397404.
    4. 4)
      • 4. Guo, X., Zhong, R., Zhao, L.: ‘Method for radial vibration modeling in switched reluctance motor’, IET Electr. Power Appl., 2016, 10, pp. 834842.
    5. 5)
      • 5. Zhang, J., Meng, Z., Gou, S.: ‘Harmonic estimation using symmetrical interpolation FFT based on triangular self-convolution window’, IEEE Trans. Ind. Inf., 2015, 11, pp. 1626.
    6. 6)
      • 6. Reza, M.S., Agelidis, V.G.: ‘A robust technique for single-phase grid voltage fundamental and harmonic parameter estimation’, IEEE Trans. Instrum. Meas., 2015, 43, pp. 32623273.
    7. 7)
      • 7. Beltran-Carbajal, F., Silva-Navarro, G.: ‘A fast parametric estimation approach of signals with multiple frequency harmonics’, Electr. Power Syst. Res., 2017, 144, pp. 157162.
    8. 8)
      • 8. Girgis, A.A., Ham, F.A.: ‘Quantitative study of pitfalls in FFT’, IEEE Trans. Aerosp. Electron Syst., 1980, 16, pp. 434439.
    9. 9)
      • 9. Dash, P.K., Sharaf, A.M.: ‘A Kalman filtering approach for estimation of power system harmonics’. Int. Conf. of Harmonics in Power Systems, 1998, pp. 3480.
    10. 10)
      • 10. Yu, K.K.C., Watson, N.R., Arrillaga, J.: ‘An adaptive Kalman filter for dynamic harmonic state estimation and harmonic injection tracking’, IEEE Trans. Power Deliv., 2005, 20, pp. 15771584.
    11. 11)
      • 11. Ray, P.S., Subudhi, B.: ‘Ensemble-Kalman-filter-based power system harmonic estimation’, IEEE Trans. Instrum. Meas., 2012, 61, pp. 32163224.
    12. 12)
      • 12. Dash, P.K., Swain, D.P., Routry, A., et al: ‘Harmonic estimation in a power system using adaptive perceptrons’, IEE Gener. Transm. Distrib., 1996, 143, pp. 565574.
    13. 13)
      • 13. Singh, S.K., Sinha, N., Goswami, A.K., et al: ‘Several variants of Kalman filter algorithm for power system harmonic estimation’, Int. J. Electr. Power Energy Syst., 2016, 83, pp. 793800.
    14. 14)
      • 14. Rodriguez, M.V., Troncoso, R.D., Rios, R.A.O., et al: ‘Detection and classification of single and combined power quality disturbances using neural networks’, IEEE Trans. Ind. Electron., 2014, 61, pp. 24732482.
    15. 15)
      • 15. Lin, H.C.: ‘Intelligent neural network-based fast power system harmonic detection’, IEEE Trans. Ind. Electron., 2007, 54, pp. 4352.
    16. 16)
      • 16. Lin, F., Zuo, S., Wu, X.: ‘Electromagnetic vibration and noise analysis for permanent magnet synchronous motor with different slot-pole combinations’, IET Electr. Power Appl., 2016, 10, pp. 834842.
    17. 17)
      • 17. Joorabian, M., Mortazavi, S.S., Khayyami, A.A.: ‘Harmonic estimation in a power system using a novel hybrid least squares-adaline algorithm’, Electr. Power Syst. Res., 2009, 79, pp. 107116.
    18. 18)
      • 18. Moravej, Z., Enayati, J.: ‘A hybrid least squares-clonal selection based algorithm for harmonic estimation’, Int. Trans. Electr. Energy Syst., 2014, 12, pp. 115.
    19. 19)
      • 19. Bettayeb, M., Qidwai, U.: ‘A hybrid least squares-GA based algorithm for harmonic estimation’, IEEE Trans. Power Deliv., 2003, 18, pp. 377382.
    20. 20)
      • 20. Lu, Z., Ji, T.Y., Tang, W.H., et al: ‘Optimal harmonic estimation using a particle swarm optimizer’, IEEE Trans. Power Deliv., 2008, 23, pp. 11661174.
    21. 21)
      • 21. Singh, S.K., Sinha, N., Goswami, A.K., et al: ‘Power system harmonic using biogeoraphy hybridized recursive least square algorithm’, Int. J. Electr. Power Energy Syst., 2016, 83, pp. 219228.
    22. 22)
      • 22. Jain, S.K., Singh, S.N., Singh, J.: ‘An adaptive time-efficient technique for harmonic estimation of non-stationary signals’, IEEE Trans. Ind. Electron., 2013, 60, pp. 32953303.
    23. 23)
      • 23. Jain, S.K., Singh, S.N.: ‘Low-order dominant harmonic estimation using adaptive wavelet neural network’, IEEE Trans. Ind. Electron., 2014, 61, pp. 428435.
    24. 24)
      • 24. Dash, P.K., Nanda, S., Chakravorty, T.: ‘A new Taylor-LMS adaptive filter for parameter estimation of power signals including distributed generation systems’, Aust. J. Electr. Electron. Eng., 2017, 35, pp. 121.
    25. 25)
      • 25. Gilles, J.: ‘Empirical wavelet transform’, IEEE Trans. Signal Process., 2013, 61, pp. 39994010.
    26. 26)
      • 26. Thirumala, T., Umarikar, A.C., Jain, T.: ‘Estimation of single phase and three phase power quality indices using empirical wavelet transform’, IEEE Trans. Power Deliv., 2014, 30, pp. 445454.
    27. 27)
      • 27. Rakpenthai, C., Uatrongjit, S., Watson, N.R., et al: ‘On harmonic state estimation of power system with uncertain network parameters’, IEEE Trans. Power Syst., 2013, 28, pp. 48294838.
    28. 28)
      • 28. Bettayeb, M., Qidwai, U.: ‘Recursive estimation of power system harmonics’, Electr. Power Syst. Res., 1998, 47, pp. 143152.
    29. 29)
      • 29. Simon, D.: ‘Optimal state estimation’ (John Wiley & Sons, New Jersey, USA, 2006).

Related content

This is a required field
Please enter a valid email address