http://iet.metastore.ingenta.com
1887

Real-time harmonics estimation in power systems using a novel hybrid algorithm

Real-time harmonics estimation in power systems using a novel hybrid algorithm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new hybrid algorithm to estimate the harmonic parameters of a distorted signal in power systems. The parameters to be estimated are amplitudes and phases of harmonic components according to the voltage/currents samples. The proposed algorithm is based on combination of the recursive least squares (RLS) and iterated extended Kalman filter (IEKF) techniques. The RLS–IEKF algorithm decomposes the problem into linear amplitude estimation and non-linear phase estimation leading to extracting the intended state vector in online mode and intensive noise presence. As well, RLS–IEKF estimates dynamic parameters using tuning factor which controls the impact of measurement on estimation process. Simulation results obtained by MATLAB show the accuracy and speed of convergence in comparison with that of conventional discrete Fourier transform and ensemble Kalman filter. For further validation, the proposed algorithm is implemented by C++ code and is applied to real switching current data. The real-time implementation of RLS–IEKF in a simple laboratory setup using PC/104 computer set and dedicated hardware shows its satisfactory performance for practical power quality and protection cases.

References

    1. 1)
      • J. Arrillaga , B.C. Smith , N.R. Watson . (1997)
        1. Arrillaga, J., Smith, B.C., Watson, N.R., et al: ‘Power system harmonic analysis’ (John Wiley & Sons, New York, USA, 1997).
        .
    2. 2)
      • M.A. Rodriguez-Guerrero , R.C. Lopez-Padilla , R.A. Osornio-Rios .
        2. Rodriguez-Guerrero, M.A., Lopez-Padilla, R.C., Osornio-Rios, R.A., et al: ‘A novel methodology for modeling waveforms for power quality disturbance analysis’, Electr. Power Syst. Res., 2017, 143, pp. 1424.
        . Electr. Power Syst. Res. , 14 - 24
    3. 3)
      • C.I. Chen , Y.C. Chen .
        3. Chen, C.I., Chen, Y.C.: ‘Comparative study of harmonic and interharmonic estimation methods for stationary and time-varying signals’, IEEE Trans. Ind. Electron., 2014, 61, pp. 397404.
        . IEEE Trans. Ind. Electron. , 397 - 404
    4. 4)
      • X. Guo , R. Zhong , L. Zhao .
        4. Guo, X., Zhong, R., Zhao, L.: ‘Method for radial vibration modeling in switched reluctance motor’, IET Electr. Power Appl., 2016, 10, pp. 834842.
        . IET Electr. Power Appl. , 834 - 842
    5. 5)
      • J. Zhang , Z. Meng , S. Gou .
        5. Zhang, J., Meng, Z., Gou, S.: ‘Harmonic estimation using symmetrical interpolation FFT based on triangular self-convolution window’, IEEE Trans. Ind. Inf., 2015, 11, pp. 1626.
        . IEEE Trans. Ind. Inf. , 16 - 26
    6. 6)
      • M.S. Reza , V.G. Agelidis .
        6. Reza, M.S., Agelidis, V.G.: ‘A robust technique for single-phase grid voltage fundamental and harmonic parameter estimation’, IEEE Trans. Instrum. Meas., 2015, 43, pp. 32623273.
        . IEEE Trans. Instrum. Meas. , 3262 - 3273
    7. 7)
      • F. Beltran-Carbajal , G. Silva-Navarro .
        7. Beltran-Carbajal, F., Silva-Navarro, G.: ‘A fast parametric estimation approach of signals with multiple frequency harmonics’, Electr. Power Syst. Res., 2017, 144, pp. 157162.
        . Electr. Power Syst. Res. , 157 - 162
    8. 8)
      • A.A. Girgis , F.A. Ham .
        8. Girgis, A.A., Ham, F.A.: ‘Quantitative study of pitfalls in FFT’, IEEE Trans. Aerosp. Electron Syst., 1980, 16, pp. 434439.
        . IEEE Trans. Aerosp. Electron Syst. , 434 - 439
    9. 9)
      • P.K. Dash , A.M. Sharaf .
        9. Dash, P.K., Sharaf, A.M.: ‘A Kalman filtering approach for estimation of power system harmonics’. Int. Conf. of Harmonics in Power Systems, 1998, pp. 3480.
        . Int. Conf. of Harmonics in Power Systems , 34 - 80
    10. 10)
      • K.K.C. Yu , N.R. Watson , J. Arrillaga .
        10. Yu, K.K.C., Watson, N.R., Arrillaga, J.: ‘An adaptive Kalman filter for dynamic harmonic state estimation and harmonic injection tracking’, IEEE Trans. Power Deliv., 2005, 20, pp. 15771584.
        . IEEE Trans. Power Deliv. , 1577 - 1584
    11. 11)
      • P.S. Ray , B. Subudhi .
        11. Ray, P.S., Subudhi, B.: ‘Ensemble-Kalman-filter-based power system harmonic estimation’, IEEE Trans. Instrum. Meas., 2012, 61, pp. 32163224.
        . IEEE Trans. Instrum. Meas. , 3216 - 3224
    12. 12)
      • P.K. Dash , D.P. Swain , A. Routry .
        12. Dash, P.K., Swain, D.P., Routry, A., et al: ‘Harmonic estimation in a power system using adaptive perceptrons’, IEE Gener. Transm. Distrib., 1996, 143, pp. 565574.
        . IEE Gener. Transm. Distrib. , 565 - 574
    13. 13)
      • S.K. Singh , N. Sinha , A.K. Goswami .
        13. Singh, S.K., Sinha, N., Goswami, A.K., et al: ‘Several variants of Kalman filter algorithm for power system harmonic estimation’, Int. J. Electr. Power Energy Syst., 2016, 83, pp. 793800.
        . Int. J. Electr. Power Energy Syst. , 793 - 800
    14. 14)
      • M.V. Rodriguez , R.D. Troncoso , R.A.O. Rios .
        14. Rodriguez, M.V., Troncoso, R.D., Rios, R.A.O., et al: ‘Detection and classification of single and combined power quality disturbances using neural networks’, IEEE Trans. Ind. Electron., 2014, 61, pp. 24732482.
        . IEEE Trans. Ind. Electron. , 2473 - 2482
    15. 15)
      • H.C. Lin .
        15. Lin, H.C.: ‘Intelligent neural network-based fast power system harmonic detection’, IEEE Trans. Ind. Electron., 2007, 54, pp. 4352.
        . IEEE Trans. Ind. Electron. , 43 - 52
    16. 16)
      • F. Lin , S. Zuo , X. Wu .
        16. Lin, F., Zuo, S., Wu, X.: ‘Electromagnetic vibration and noise analysis for permanent magnet synchronous motor with different slot-pole combinations’, IET Electr. Power Appl., 2016, 10, pp. 834842.
        . IET Electr. Power Appl. , 834 - 842
    17. 17)
      • M. Joorabian , S.S. Mortazavi , A.A. Khayyami .
        17. Joorabian, M., Mortazavi, S.S., Khayyami, A.A.: ‘Harmonic estimation in a power system using a novel hybrid least squares-adaline algorithm’, Electr. Power Syst. Res., 2009, 79, pp. 107116.
        . Electr. Power Syst. Res. , 107 - 116
    18. 18)
      • Z. Moravej , J. Enayati .
        18. Moravej, Z., Enayati, J.: ‘A hybrid least squares-clonal selection based algorithm for harmonic estimation’, Int. Trans. Electr. Energy Syst., 2014, 12, pp. 115.
        . Int. Trans. Electr. Energy Syst. , 1 - 15
    19. 19)
      • M. Bettayeb , U. Qidwai .
        19. Bettayeb, M., Qidwai, U.: ‘A hybrid least squares-GA based algorithm for harmonic estimation’, IEEE Trans. Power Deliv., 2003, 18, pp. 377382.
        . IEEE Trans. Power Deliv. , 377 - 382
    20. 20)
      • Z. Lu , T.Y. Ji , W.H. Tang .
        20. Lu, Z., Ji, T.Y., Tang, W.H., et al: ‘Optimal harmonic estimation using a particle swarm optimizer’, IEEE Trans. Power Deliv., 2008, 23, pp. 11661174.
        . IEEE Trans. Power Deliv. , 1166 - 1174
    21. 21)
      • S.K. Singh , N. Sinha , A.K. Goswami .
        21. Singh, S.K., Sinha, N., Goswami, A.K., et al: ‘Power system harmonic using biogeoraphy hybridized recursive least square algorithm’, Int. J. Electr. Power Energy Syst., 2016, 83, pp. 219228.
        . Int. J. Electr. Power Energy Syst. , 219 - 228
    22. 22)
      • S.K. Jain , S.N. Singh , J. Singh .
        22. Jain, S.K., Singh, S.N., Singh, J.: ‘An adaptive time-efficient technique for harmonic estimation of non-stationary signals’, IEEE Trans. Ind. Electron., 2013, 60, pp. 32953303.
        . IEEE Trans. Ind. Electron. , 3295 - 3303
    23. 23)
      • S.K. Jain , S.N. Singh .
        23. Jain, S.K., Singh, S.N.: ‘Low-order dominant harmonic estimation using adaptive wavelet neural network’, IEEE Trans. Ind. Electron., 2014, 61, pp. 428435.
        . IEEE Trans. Ind. Electron. , 428 - 435
    24. 24)
      • P.K. Dash , S. Nanda , T. Chakravorty .
        24. Dash, P.K., Nanda, S., Chakravorty, T.: ‘A new Taylor-LMS adaptive filter for parameter estimation of power signals including distributed generation systems’, Aust. J. Electr. Electron. Eng., 2017, 35, pp. 121.
        . Aust. J. Electr. Electron. Eng. , 1 - 21
    25. 25)
      • J. Gilles .
        25. Gilles, J.: ‘Empirical wavelet transform’, IEEE Trans. Signal Process., 2013, 61, pp. 39994010.
        . IEEE Trans. Signal Process. , 3999 - 4010
    26. 26)
      • T. Thirumala , A.C. Umarikar , T. Jain .
        26. Thirumala, T., Umarikar, A.C., Jain, T.: ‘Estimation of single phase and three phase power quality indices using empirical wavelet transform’, IEEE Trans. Power Deliv., 2014, 30, pp. 445454.
        . IEEE Trans. Power Deliv. , 445 - 454
    27. 27)
      • C. Rakpenthai , S. Uatrongjit , N.R. Watson .
        27. Rakpenthai, C., Uatrongjit, S., Watson, N.R., et al: ‘On harmonic state estimation of power system with uncertain network parameters’, IEEE Trans. Power Syst., 2013, 28, pp. 48294838.
        . IEEE Trans. Power Syst. , 4829 - 4838
    28. 28)
      • M. Bettayeb , U. Qidwai .
        28. Bettayeb, M., Qidwai, U.: ‘Recursive estimation of power system harmonics’, Electr. Power Syst. Res., 1998, 47, pp. 143152.
        . Electr. Power Syst. Res. , 143 - 152
    29. 29)
      • D. Simon . (2006)
        29. Simon, D.: ‘Optimal state estimation’ (John Wiley & Sons, New Jersey, USA, 2006).
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0044
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0044
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address