Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Point estimate method based on univariate dimension reduction model for probabilistic power flow computation

This study employs Gaussian copula to model correlated non-normal variables in power system, whereby the probabilistic power flow (PPF) problem is transformed to independent standard normal space. In conjunction with univariate dimension reduction model, two quadrature rules: Gauss-logistic (GL) quadrature and Clenshaw–Curtis (CC) quadrature, are developed to calculate the moments of PPF solutions; for CC quadrature, the weights and nodes are given explicitly. Testing on a modified 118-bus system, it is found that CC quadrature converges more uniformly than the generally used Gauss–Hermite quadrature, and GL quadrature is more accurate.

References

    1. 1)
      • 17. Xu, X, Yan, Z.: ‘Probabilistic load flow evaluation considering correlated input random variables’, Int. Trans. Electr. Energy Syst., 2016, 26, (3), pp. 555572.
    2. 2)
      • 1. Villanueva, D, Pazos, J.L., Feijoo, A.: ‘Probabilistic load flow including wind power generation’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 16591667.
    3. 3)
      • 3. Hofert, M.: ‘Sampling Archimedean copulas’, Comput. Stat. Data Anal., 2008, 52, (12), pp. 51635174.
    4. 4)
      • 24. Delgado, C, Domínguez-Navarro, J.: ‘Point estimate method for probabilistic load flow of an unbalanced power distribution system with correlated wind and solar sources’, Int. J. Electr. Power Energy Syst., 2014, 61, pp. 267278.
    5. 5)
      • 22. Li, Y, Li, W, Yan, W, et al: ‘Probabilistic optimal power flow considering correlations of wind speeds following different distributions’, IEEE Trans. Power Syst., 2014, 29, (4), pp. 18471854.
    6. 6)
      • 19. Ren, Z, Li, W, Billinton, R, et al: ‘Probabilistic power flow analysis based on the stochastic response surface method’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 23072315.
    7. 7)
      • 26. Wu, W, Wang, K, Li, G, et al: ‘A multivariate dimension-reduction method for probabilistic power flow calculation’, Electr. Power Syst. Res., 2016, 141, pp. 272280.
    8. 8)
      • 2. Valverde, G, Saric, A.T., Terzija, V.: ‘Probabilistic load flow with non-Gaussian correlated random variables using Gaussian mixture models’, IET Gener. Transm. Distrib., 2012, 6, (7), pp. 701709.
    9. 9)
      • 12. Zhang, L, Cheng, H, Zhang, S, et al: ‘Probabilistic power flow calculation using the Johnson system and Sobol quasirandom numbers’, IET. Gener. Transm. Distrib., 2016, 10, (12), pp. 30503059.
    10. 10)
      • 13. Cai, D, Shi, D, Chen, J.: ‘Probabilistic load flow computation with polynomial normal transformation and latin hypercube sampling’, IET Gener. Transm. Distrib., 2013, 7, (5), pp. 474482.
    11. 11)
      • 5. Cao, J, Yan, Z.: ‘Probabilistic optimal power flow considering dependences of wind speed among wind farms by pair-copula method’, Int. J. Electr. Power Energy Syst., 2017, 84, pp. 296307.
    12. 12)
      • 20. Morales, J.M., Baringo, L, Conejo, A.J., et al: ‘Probabilistic power flow with correlated wind sources’, IET Gener. Transm. Distrib., 2010, 4, (5), pp. 641651.
    13. 13)
      • 33. Hong, Y.Y., Lin, F.J., Yu, T.H..: ‘Taguchi method-based probabilistic load flow studies considering uncertain renewables and loads’, IET Renew. Power Gener., 2016, 10, (2), pp. 221227.
    14. 14)
      • 23. Saunders, C.S..: ‘Point estimate method addressing correlated wind power for probabilistic optimal power flow’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 10451054.
    15. 15)
      • 8. Fan, M, Vittal, V, Heydt, G.T., et al: ‘Probabilistic power flow studies for transmission systems with photovoltaic generation using cumulants’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 22512261.
    16. 16)
      • 9. Wu, W, Wang, K, Li, G, et al: ‘Probabilistic load flow calculation using cumulants and multiple integrals’, IET Gener. Transm. Distrib., 2016, 10, (7), pp. 17031709.
    17. 17)
      • 35. Xiao, Q.: ‘Evaluating correlation coefficient for Nataf transformation’, Probab. Eng. Mech., 2014, 37, pp. 16.
    18. 18)
      • 36. Rahman, S, Xu, H.: ‘A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics’, Probab. Eng. Mech., 2004, 19, (4), pp. 393408.
    19. 19)
      • 34. Li, H.S., Lü, Z.Z., Yuan, X.: ‘Nataf transformation based point estimate method’, Chin. Sci. Bull., 2008, 53, (17), pp. 25862592.
    20. 20)
      • 14. Cai, D, Shi, D, Chen, J.: ‘Probabilistic load flow with correlated input random variables using uniform design sampling’, Int. J. Electr. Power Energy Syst., 2014, 63, pp. 105112.
    21. 21)
      • 25. Aien, M, Fotuhi-Firuzabad, M, Rashidinejad, M.: ‘Probabilistic optimal power flow in correlated hybrid wind–photovoltaic power systems’, IEEE Trans. Smart Grid, 2014, 5, (1), pp. 130138.
    22. 22)
      • 28. Morales, J.M., Péez-Ruiz, J.: ‘Point estimate schemes to solve the probabilistic power flow’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 15941601.
    23. 23)
      • 30. Mohammadi, M, Shayegani, A, Adaminejad, H.: ‘A new approach of point estimate method for probabilistic load flow’, Int. J. Electr. Power Energy Syst., 2013, 51, (2), pp. 5460.
    24. 24)
      • 31. Zou, B, Xiao, Q.: ‘Probabilistic load flow computation using univariate dimension reduction method’, Int. Trans. Electr. Energy Syst., 2014, 24, (12), pp. 17001714.
    25. 25)
      • 27. Su, C.L..: ‘Probabilistic load-flow computation using point estimate method’, IEEE Trans. Power Syst., 2005, 20, (4), pp. 18431851.
    26. 26)
      • 16. Chen, Y, Wen, J.Y., Cheng, S.J..: ‘Probabilistic load flow method based on Nataf transformation and latin hypercube sampling’, IEEE Trans. Sustain. Energy, 2013, 4, (2), pp. 294301.
    27. 27)
      • 6. Usaola, J.: ‘Probabilistic load flow with correlated wind power injections’, Electr. Power Syst. Res., 2010, 80, (5), pp. 528536.
    28. 28)
      • 32. Aien, M, Fotuhi-Firuzabad, M, Aminifar, F.: ‘Probabilistic load flow in correlated uncertain environment using unscented transformation’, IEEE Trans. Power Syst., 2012, 27, (4), pp. 22332241.
    29. 29)
      • 15. Shu, Z, Jirutitijaroen, P.: ‘Latin hypercube sampling techniques for power systems reliability analysis with renewable energy sources’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 20662073.
    30. 30)
      • 21. Chen, C, Wu, W, Zhang, B, et al: ‘Correlated probabilistic load flow using a point estimate method with Nataf transformation’, Int. J. Electr. Power Energy Syst., 2015, 65, pp. 325333.
    31. 31)
      • 7. Ruiz-Rodriguez, F.J., Hernández, J.C., Jurado, F.: ‘Probabilistic load flow for photovoltaic distributed generation using the Cornish–Fisher expansion’, Electr. Power Syst. Res., 2012, 89, pp. 129138.
    32. 32)
      • 10. Usaola, J.: ‘Probabilistic load flow in systems with wind generation’, IET Gener. Transm. Distrib., 2009, 3, (12), pp. 10311041.
    33. 33)
      • 11. Ruiz-Rodriguez, F, Hernandez, J, Jurado, F.: ‘Probabilistic load flow for photovoltaic distributed generation using the Cornish–Fisher expansion’, Electr. Power Syst. Res., 2012, 89, pp. 129138.
    34. 34)
      • 18. Hajian, M, Rosehart, W.D., Zareipour, H.: ‘Probabilistic power flow by Monte Carlo simulation with latin supercube sampling’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 15501559.
    35. 35)
      • 29. Verbič, G, Cañizares, C.A..: ‘Probabilistic optimal power flow in electricity markets based on a two-point estimate method’, IEEE Trans. Power Syst., 2006, 21, (4), pp. 18831893.
    36. 36)
      • 4. Wu, W, Wang, K, Han, B, et al: ‘A versatile probability model of photovoltaic generation using pair copula construction’, IEEE Trans. Sustain. Energy, 2015, 6, (4), pp. 13371345.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2017.0023
Loading

Related content

content/journals/10.1049/iet-gtd.2017.0023
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address