access icon free Modified group search optimisation-based comparative performance evaluation of thyristor controlled series capacitor-based fractional order damping controllers to improve load frequency control performance in restructured environment

This study compares fractional order phase lead-lag controller, fractional order proportional-integral-derivative (FOPID), and tilt-integral-derivative controllers as thyristor controlled series capacitor (TCSC)-based damping controller to improve load frequency control (LFC) performance in a restructured power system. To prepare an efficient ancillary service, a precise formulation for participation of TCSC in tie-line power flow exchange is presented which is compared with the earlier Taylor-based approximated model. The controller parameters are adjusted by employing different evolutionary algorithms. To obtain realistic results under a competitive environment, a diverse-GENCOs multi-DISCOs power system with the generation rate constraint and governor dead-band effects, communication time delay, bilateral contracts, and pool-co transactions is taken into account. Non-linear time-domain simulations demonstrate that the FOPID-based TCSC damping controller in coordination with an integral-type simple LFC can most effectively suppress the area frequency and tie-line power oscillations. Further investigations are performed for uncontracted higher order step and random load demands treated as contract violation scenarios to confirm the superiority of the proposed fractional order controllers-based TCSC–LFC over the Taylor-based TCSC–LFC. The sensitivity analysis is done for a wide range of loading condition and system parameters to compare the robustness of the considered controllers.

Inspec keywords: thyristor applications; sensitivity analysis; delays; time-domain analysis; load regulation; evolutionary computation; frequency control

Other keywords: evolutionary algorithms; communication time delay; random load demands; tilt-integral-derivative controllers; FOPID; governor dead-band effects; thyristor controlled series capacitor-based fractional order damping controllers; fractional order phase lead-lag controller; pool-co transactions; generation rate constraint; contract violation scenarios; Taylor-based approximated model; restructured environment; tie-line power flow exchange; LFC; load frequency control performance; bilateral contracts; sensitivity analysis; TCSC; restructured power system; nonlinear time-domain simulations; modified group search optimisation-based comparative performance evaluation; ancillary service

Subjects: Optimisation techniques; Control of electric power systems; Mathematical analysis; Distributed parameter control systems; Power convertors and power supplies to apparatus; Mathematical analysis; Frequency control; Power system control; Optimisation techniques

References

    1. 1)
      • 23. Deepak, M., Abraham, R.J.: ‘Load following in a deregulated power system with thyristor controlled series compensator’, Int. J. Electr. Power Energy Syst., 2015, 65, pp. 136145.
    2. 2)
      • 37. Tepljakov, A., Petlenkov, E., Belikov, J., et al: ‘Tuning and digital implementation of a fractional-order PD controller for a position servo’, Int. J. Microelectr. Comput. Sci., 2013, 4, (3), pp. 116123.
    3. 3)
      • 38. Pan, I., Das, S.: ‘Frequency domain design of fractional order PID controller for AVR system using chaotic multi-objective optimization’, Int. J. Electr. Power Energy Syst., 2013, 51, pp. 106118.
    4. 4)
      • 13. Singh, V.P., Kishor, N., Samuel, P., et al: ‘Impact of communication delay on frequency regulation in hybrid power system using optimized H-infinity controller’, IETE J. Res., 2016, 62, (3), pp. 356367.
    5. 5)
      • 26. Lurie, B.J.: ‘Three-parameter tunable tilt-integral-derivative (TID) controller’ (The United States of America patent, Washington, DC, 1994).
    6. 6)
      • 17. Shayeghi, H., Shayanfar, H.: ‘PSO based neuro-fuzzy controller for LFC design including communication time delays’, Int. J. Tech. Phys. Probl. Eng., 2010, 1, (2), pp. 2836.
    7. 7)
      • 19. Morsali, J., Zare, K., Hagh, M.T.: ‘Performance comparison of TCSC with TCPS and SSSC controllers in AGC of realistic interconnected multi-source power system’, Ain Shams Eng. J., 2016, 7, (1), pp. 143158.
    8. 8)
      • 12. Jiang, L., Yao, W., Wu, Q., et al: ‘Delay-dependent stability for load frequency control with constant and time-varying delays’, IEEE Trans. Power Syst., 2012, 27, (2), pp. 932941.
    9. 9)
      • 39. He, S., Wu, Q.H., Saunders, J.: ‘Group search optimizer: an optimization algorithm inspired by animal searching behavior’, IEEE Trans. Evol. Comput., 2009, 13, (5), pp. 973990.
    10. 10)
      • 5. Rahman, A., Saikia, L.C., Sinha, N.: ‘Maiden application of hybrid pattern search-biogeography based optimisation technique in automatic generation control of a multi-area system incorporating interline power flow controller’, IET Gener. Transm. Distrib., 2016, 10, (7), pp. 16541662.
    11. 11)
      • 11. Ahmadi, A., Aldeen, M.: ‘An LMI approach to the design of Robust delay-dependent overlapping load frequency control of uncertain power systems’, Int. J. Electr. Power Energy Syst., 2016, 81, pp. 4863.
    12. 12)
      • 6. Rahman, A., Chandra Saikia, L., Sinha, N.: ‘Load frequency control of a hydro-thermal system under deregulated environment using biogeography-based optimised three-degree-of-freedom integral-derivative controller’, IET Gener. Trans. Distrib., 2015, 9, (15), pp. 22842293.
    13. 13)
      • 20. Parmar, K., Majhi, S., Kothari, D.: ‘LFC of an interconnected power system with multi-source power generation in deregulated power environment’, Int. J. Electr. Power Energy Syst., 2014, 57, pp. 277286.
    14. 14)
      • 9. Abdelaziz, A., Ali, E.: ‘Cuckoo search algorithm based load frequency controller design for nonlinear interconnected power system’, Int. J. Electr. Power Energy Syst., 2015, 73, pp. 632643.
    15. 15)
      • 28. Salehtavazoei, M., Tavakoli-Kakhki, M.: ‘Compensation by fractional-order phase-lead/lag compensators’, IET Control Theory Applic., 2014, 8, (5), pp. 319329.
    16. 16)
      • 2. Sahu, R.K., Sekhar, G.C., Panda, S.: ‘DE optimized fuzzy PID controller with derivative filter for LFC of multi source power system in deregulated environment’, Ain Shams Eng. J., 2015, 6, (2), pp. 511530.
    17. 17)
      • 29. Chathoth, I., Ramdas, S.K., Krishnan, S.T.: ‘Fractional-order proportional-integral-derivative-based automatic generation control in deregulated power systems’, Electr. Power Compon. Syst., 2015, 43, (17), pp. 19311945.
    18. 18)
      • 27. Monje, C.A., Chen, Y., Vinagre, B.M., et al: ‘Fractional-order systems and controls: fundamentals and applications’ (Springer Science & Business Media, 2010).
    19. 19)
      • 4. Pan, I., Das, S.: ‘Fractional-order load-frequency control of interconnected power systems using chaotic multi-objective optimization’, Appl. Soft Comput., 2015, 29, pp. 328344.
    20. 20)
      • 10. Yohanandhan, R.V., Srinivasan, L.: ‘Decentralised wide-area fractional order damping controller for a large-scale power system’, IET. Gener. Transm. Distrib., 2016, 10, (5), pp. 11641178.
    21. 21)
      • 35. Zare, K., Haque, M.T., Davoodi, E.: ‘Solving non-convex economic dispatch problem with valve point effects using modified group search optimizer method’, Electr. Power Syst. Res., 2012, 84, (1), pp. 8389.
    22. 22)
      • 22. Falehi, A.D., Mosallanejad, A.: ‘Neoteric Hanfisc–SSSC based on MOPSO technique aimed at oscillation suppression of interconnected multi-source power systems’, IET Gener. Transm. Distrib., 2016, 10, (7), pp. 17281740.
    23. 23)
      • 18. Daniar, S., Shiroei, M., Aazami, R.: ‘Multivariable predictive control considering time delay for load-frequency control in multi-area power systems’, Arch. Control Sci., 2016, 26, (4), pp. 527549.
    24. 24)
      • 30. Sahu, R.K., Panda, S., Biswal, A., et al: ‘Design and analysis of tilt integral derivative controller with filter for load frequency control of multi-area interconnected power systems’, ISA Trans., 2016, 61, pp. 251264.
    25. 25)
      • 24. Padhan, S., Sahu, R.K., Panda, S.: ‘Automatic generation control with thyristor controlled series compensator including superconducting magnetic energy storage units’, Ain Shams Eng. J., 2014, 5, (3), pp. 759774.
    26. 26)
      • 25. Pradhan, P.C., Sahu, R.K., Panda, S.: ‘Firefly algorithm optimized fuzzy PID controller for AGC of multi-area multi-source power systems with UPFC and SMES’, Int. J. Eng. Sci. Technol., 2016, 19, (1), pp. 338354.
    27. 27)
      • 16. Bevrani, H.: ‘Robust power system frequency control’ (Springer, 2009).
    28. 28)
      • 32. Das, S., Pan, I.: ‘On the mixed loop-shaping tradeoffs in fractional-order control of the AVR system’, IEEE Trans. Ind. Inf., 2014, 10, (4), pp. 19821991.
    29. 29)
      • 7. Sahu, R.K., Panda, S., Rout, U.K.: ‘DE optimized parallel 2-DOF PID controller for load frequency control of power system with governor dead-band nonlinearity’, Int. J. Electr. Power Energy Syst., 2013, 49, pp. 1933.
    30. 30)
      • 33. Morsali, J., Zare, K., Hagh, M.T.: ‘Applying fractional order PID to design TCSC-based damping controller in coordination with automatic generation control of interconnected multi-source power system’, Eng. Sci. Technol. Int. J., 2017, 20, (1), pp. 117.
    31. 31)
      • 36. Tepljakov, A., Petlenkov, E., Belikov, J.: ‘Fomcon: a MATLAB toolbox for fractional-order system identification and control’, Int. J. Microelectr. Comput. Sci., 2011, 2, (2), pp. 5162.
    32. 32)
      • 31. Pan, I., Das, S.: ‘Chaotic multi-objective optimization based design of fractional order PIλDμ controller in AVR system’, Int. J. Electr. Power Energy Syst., 2012, 43, (1), pp. 393407.
    33. 33)
      • 34. Hagh, M.T., Morsali, J., Zare, K., et al: ‘Introducing FOPLC based TCSC in coordination with AGC to improve frequency stability of interconnected multi-source power system’. Power Engineering Conf. (AUPEC), 2015 Australasian Universities, 2015.
    34. 34)
      • 8. Singh, V.P., Kishor, N., Samuel, P.: ‘Communication time delay estimation for load frequency control in two-area power system’, Ad Hoc Netw., 2016, 41, pp. 6985.
    35. 35)
      • 14. Khalil, A., Wang, J.-H., Mohamed, O.: ‘Robust stabilization of load frequency control system under networked environment’, Int. J. Autom. Comput., 2017, 14, (1), pp. 93105.
    36. 36)
      • 15. Gorripotu, T.S., Sahu, R.K., Panda, S.: ‘AGC of a multi-area power system under deregulated environment using redox flow batteries and interline power flow controller’, Int. J. Eng. Sci. Technol., 2015, 18, (4), pp. 555578.
    37. 37)
      • 1. Bevrani, H., Hiyama, T.: ‘Intelligent automatic generation control’ (CRC Press, 2011).
    38. 38)
      • 21. Morsali, J., Zare, K., Hagh, M.T.: ‘MGSO optimised TID-based GCSC damping controller in coordination with AGC for diverse-gencos multi-discos power system with considering GDB and GRC non-linearity effects’, IET. Gener. Transm. Distrib., 2017, 11, (1), pp. 193208.
    39. 39)
      • 3. Zare, K., Hagh, M.T., Morsali, J.: ‘Effective oscillation damping of an interconnected multi-source power system with automatic generation control and TCSC’, Int. J. Electr. Power Energy Syst., 2015, 65, pp. 220230.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.2094
Loading

Related content

content/journals/10.1049/iet-gtd.2016.2094
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading