Fully GPU-based electromagnetic transient simulation considering large-scale control systems for system-level studies

Fully GPU-based electromagnetic transient simulation considering large-scale control systems for system-level studies

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As more generators and loads are integrated by power electronic converters with complicated controls, electromagnetic transients (EMTs) simulation becomes an important tool for studying dynamic characteristics of large-scale power systems. To accelerate system-level EMT simulations, a fine-grained parallel algorithm on graphics processing units (GPU) is proposed. By decomposing the computational models of the EMT simulation into heterogeneous, homogeneous and network solution computations, the simulations are mapped into three unified GPU kernels. To incorporate control signals and non-linear features of electrical components, heterogeneous computations are formulated as layered direct acyclic graphs (LDAG) of primitive operations. An LDAG kernel is designed to carry out theses primitive operations efficiently by grouped threads. Then, homogeneous computations for state updates of electrical components are modelled as sets of fused multiply-add (FMA) operations, which are concurrently processed by an FMA kernel. Moreover, a hybrid network solution kernel is designed to solve the network equations, which can adaptively select dense or sparse solvers. Large-scale test systems are created and simulated on an NVIDIA K20x GPU. The results show that the proposed GPU-based EMT simulations are accurate and achieve 10x speedups over the CPU-based ones.


    1. 1)
      • 1. Mahseredjian, J., Dinavahi, V., Martinez, J.A.: ‘Simulation tools for electromagnetic transients in power systems: overview and challenges’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 16571669.
    2. 2)
      • 2. Keckler, S.W., Dally, W.J., Khailany, B., et al: ‘GPUs and the future of parallel computing’, IEEE Micro, 2011, 31, (5), pp. 717.
    3. 3)
      • 3. Tomim, M.A., Marti, J.R., De Rybel, T., et al: ‘MATE network tearing techniques for multiprocessor solution of large power system networks’. 2010 IEEE Power and Energy Society General Meeting, Minneapolis, July 2010, pp. 16.
    4. 4)
      • 4. Hollman, J.A., Marti, J.R.: ‘Real time network simulation with PC-cluster’, IEEE Trans. Power Syst., 2003, 18, (2), pp. 563569.
    5. 5)
      • 5. Yue, C., Zhou, X., Li, R.: ‘Node-splitting approach used for network partition and parallel processing in electromagnetic transient simulation’. 2004 Int. Conf. on Power System Technology (POWERCON 2004), November 2004, pp. 425430.
    6. 6)
      • 6. Happ, H.H.: ‘Diakoptics and piecewise methods’, IEEE Trans. Power Appar. Syst., 1970, 89, (7), pp. 13731382.
    7. 7)
      • 7. Pak, L.-F., Faruque, M.O., Nie, X., et al: ‘A versatile cluster-based real-time digital simulator for power engineering research’, IEEE Trans. Power Syst., 2006, 21, (2), pp. 455465.
    8. 8)
      • 8. Chen, Y., Dinavahi, V.: ‘Multi-FPGA digital hardware design for detailed large-scale real-time electromagnetic transient simulation of power systems’, IET Gener. Transm. Distrib., 2013, 7, (5), pp. 451463.
    9. 9)
      • 9. Li, X., Li, F.: ‘GPU-based power flow analysis with Chebyshev preconditioner and conjugate gradient method’, Electr. Power Syst. Res., 2014, 116, pp. 8793.
    10. 10)
      • 10. Roberge, V., Tarbouchi, M., Okou, F.: ‘Parallel power flow on graphics processing units for concurrent evaluation of many networks’, IEEE Trans. Smart Grid, 2015, PP, (99), pp. 110.
    11. 11)
      • 11. Karimipour, H., Dinavahi, V.: ‘Extended Kalman filter-based parallel dynamic state estimation’, IEEE Trans. Smart Grid, 2015, 6, (3), pp. 15391549.
    12. 12)
      • 12. Jalili-Marandi, V., Dinavahi, V.: ‘SIMD-based large-scale transient stability simulation on the graphics processing unit’, IEEE Trans. Power Syst., 2010, 25, (3), pp. 15891599.
    13. 13)
      • 13. Debnath, J.K., Fung, W.-K., Gole, A.M., et al: ‘Simulation of large-scale electrical power networks on graphics processing units’. 2011 IEEE Electrical Power and Energy Conf. (EPEC), October 2011, pp. 199204.
    14. 14)
      • 14. Zhou, Z., Dinavahi, V.: ‘Parallel massive-thread electromagnetic transient simulation on GPU’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 10451053.
    15. 15)
      • 15. Debnath, J.K., Gole, A.M., Fung, W.k.: ‘Graphics processing unit based acceleration of electromagnetic transients simulation’, IEEE Trans. Power Deliv., 2015, PP, (99), pp. 19.
    16. 16)
      • 16. NVIDIA: ‘CUDA Toolkit Documentation v7.5’ (NVIDIA, 2016).
    17. 17)
      • 17. Cheng, J., Grossman, M., McKercher, T.: ‘Professional CUDA C programming’ (John Wiley & Sons, 2014).
    18. 18)
      • 18. Dommel, H.W.: ‘Digital computer solution of electromagnetic transients in single and multiphase networks’, IEEE Trans. Power Appar. Syst., 1969, 88, (4), pp. 388399.
    19. 19)
      • 19. Ametani, A.: ‘Numerical analysis of power system transients and dynamics’ (IET Energy Engineering, 2015).
    20. 20)
      • 20. Mahseredjian, J., Dubé, L., Zou, M., et al: ‘Elimination of numerical delays in the solution of control systems in EMTP’. Proc. Int. Power Systems Transients Conf. (IPST'2005), Montreal, Canada, June 2005.
    21. 21)
      • 21. Watson, N., Arrillaga, J.: ‘Power systems electromagnetic transients simulation’ (IET, 2003).
    22. 22)
      • 22. Eades, P., Xuemin, L.: ‘How to draw a directed graph’. IEEE Workshop on Visual Languages, October 1989, pp. 1317.
    23. 23)
      • 23. Intel: ‘Intel Math Kernel Library User's Guide’ (Intel, 2008).
    24. 24)
      • 24. Gole, A.M., Nayak, O.B., Sidhu, T.S., et al: ‘A graphical electromagnetic simulation laboratory for power systems engineering programs’, IEEE Trans. Power Syst., 1996, 11, (2), pp. 599606.
    25. 25)
      • 25. Kersting, W.H.: ‘Radial distribution test feeders’, IEEE Trans. Power Syst., 1991, 6, (3), pp. 975985.
    26. 26)
      • 26. Gow, J.A., Manning, C.D.: ‘Development of a photovoltaic array model for use in power-electronics simulation studies’, IEE Proc. Electr. Power Appl., 1999, 146, (2), pp. 193200.
    27. 27)
      • 27. Koutroulis, E., Kalaitzakis, K., Voulgaris, N.C.: ‘Development of a microcontroller-based, photovoltaic maximum power point tracking control system’, IEEE Trans. Power Electr., 2001, 16, (1), pp. 4654.
    28. 28)
      • 28. Chiniforoosh, S., Jatskevich, J., Yazdani, A., et al: ‘Definitions and applications of dynamic average models for analysis of power systems’, IEEE Trans. Power Deliv., 2010, 25, (4), pp. 26552669.
    29. 29)
      • 29. Humphrey, J.R., Price, D.K., Spagnoli, K.E., et al: ‘CULA: hybrid GPU accelerated linear algebra routines’. SPIE defense, security, and sensing, Orlando, USA, 2010.
    30. 30)
      • 30. NVIDIA: ‘CUDA Profiler Users Guide v7.5’ (NVIDIA, 2015).

Related content

This is a required field
Please enter a valid email address