access icon free Robust pole placement for power systems using two-dimensional membership fuzzy constrained controllers

This study presents a design method of power system stabilisers (PSSs) to damp system oscillations. The design is based on fuzzy logic and linear matrix inequality (LMI) techniques. The design guarantees a robust pole placement in a desired region in the complex plane for different loading conditions. Due to system non-linearity and load dependency, the whole wide range of operating condition is divided into three subregions. For each subregion, a norm-bounded uncertainty linear model is developed and a robust LMI-based pole placer is designed considering controller constraint. Takagi–Sugeno fuzzy model is used to guarantee smoothly switching between the LMI-based controllers of the three subregions. The proposed technique avoids solving many LMIs as in the polytypic approach and avoids the infeasibility problem that might arise from solving the LMIs for the complete region of operation. In addition, the proposed fuzzy logic switching controller has reduced drastically the fuzzy rules due to the use of two-dimensional (2D) membership functions. Particle swarm optimisation is used to tune the proposed 2D membership functions to guarantee smooth switching of the controllers while maintaining the desired constraints. The simulation results of both single-machine and multi-machine power systems confirm the effectiveness of the proposed PSS design.

Inspec keywords: fuzzy control; power system stability; linear matrix inequalities

Other keywords: two-dimensional membership function; polytypic approach; robust pole placement; fuzzy logic switching controller; norm-bounded uncertainty linear model; heavy load; system nonlinearity; single-machine power systems; LMI techniques; nominal load; load dependency; system oscillation damp;ing; linear matrix inequality techniques; PSS design method; Takagi-Sugeno fuzzy model; multimachine power systems; LMI-based controllers; complex plane; robust LMI-based pole placer; light load; infeasibility problem; two-dimensional membership fuzzy constrained controllers; power system stabilisers

Subjects: Power system control; Algebra; Fuzzy control; Algebra; Control of electric power systems

References

    1. 1)
      • 10. Werner, H., Korba, P., Chen Yang, T.: ‘Robust tuning of power system stabilizers using LMI techniques’, IEEE Trans. Control Syst. Technol., 2003, 11, (1), pp. 1472003.
    2. 2)
      • 23. Hussein, T., Saad, M.S., Elshafei, A.L., et al: ‘Damping inter-area modes of oscillation using an adaptive fuzzy power system stabilizer’, Electr. Power Syst. Res., 2010, 80, (12), pp. 14281436.
    3. 3)
      • 15. Yohanandhan, R.V., Srinivasan, L.: ‘Centralised wide-area fractional order damping controller for a large-scale power system’, IET Gener. Transm. Distrib., 2016, 10, (5), pp. 11641178.
    4. 4)
      • 4. Machowski, J, Bialek, J.W., Bumby, J.: ‘Power system dynamics: stability and control’ (John Wiley, UK, 2008, 2nd edn.).
    5. 5)
      • 13. Konara, A.I., Annakkage, U.D.: ‘Robust power system stabilizer design using eigenstructure assignment’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 18451853.
    6. 6)
      • 21. Feng, G.: ‘A survey on analysis and design of model-based fuzzy control systems’, IEEE Trans. Fuzzy Syst., 2006, 14, (5), pp. 676697.
    7. 7)
      • 6. Soliman, M.: ‘Parameterization of robust three-term power system stabilizers’, Electr. Power Syst. Res., 2014, 117, (12), pp. 172184.
    8. 8)
      • 22. Tanaka, K., Wang, H.O.: ‘Fuzzy control systems design and analysis: a linear matrix inequality approach’ (John Wiley and Sons., New York, 2001).
    9. 9)
      • 3. Pal, B., Chaudhuri, B.: ‘Robust control in power systems’ (Springer, 2005).
    10. 10)
      • 5. Soliman, H.M., Elshafei, A.L., Shaltout, A., et al: ‘Robust power system stabilizer’, IEE Proc. Gener. Transm. Distrib., 2000, 147, (5), pp. 285229.
    11. 11)
      • 25. Azimi, V., Fakharian, A., Menhaj, M.B.: ‘Position and current control of a permanent-magnet synchronous motor by using loop-shaping methodology: blending of H∞ mixed-sensitivity problem and T–S fuzzy model scheme’, ASME J. Dyn. Syst. Meas. Control, 2013, 135, (5), pp. 051006051006-11.
    12. 12)
      • 14. Sánchez-Ayala, G., Centeno, V., Thorp, J.: ‘Gain scheduling with classification trees for robust centralized control of PSSs’, IEEE Trans. Power Syst., 2016, 31, (3), pp. 19331942.
    13. 13)
      • 2. Kundur, P.: ‘Power system stability and control’ (McGraw-Hill, New York, 1994).
    14. 14)
      • 12. Liu, Y., Wu, Q.H., Kang, H., et al: ‘Switching power system stabilizer and its coordination for enhancement of multi-machine power system stability’, CSEE J. Power Energy Syst., 2016, 2, (2), pp. 98106.
    15. 15)
      • 28. Benzaouia, A: ‘Saturated switching systems’ (Springer-Verlag, London, 2012).
    16. 16)
      • 27. Kennedy, J., Eberhart, R.C.: ‘Particle swarm optimization’. Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, 1995, pp. 19421948.
    17. 17)
      • 26. Soliman, H.M., Yousef, H.: ‘Saturated robust power system stabilizers’, Int. J. Electr.Power Energy Syst., 2015, 73, (12), pp. 608614.
    18. 18)
      • 17. Khadanga, R.K., Satapathy, J.K.: ‘Time delay approach for PSS and SSSC based coordinated controller design using hybrid PSO–GSA algorithm’, Electr. Power Energy Syst., 2015, 71, (10), pp. 262273.
    19. 19)
      • 11. Soliman, H.M., Dabroum, A., Mahmoud, M.S., et al: ‘Guaranteed-cost reliable control with regional pole placement of a power system’, J. Franklin Inst., 2011, 348, (5), pp. 884898.
    20. 20)
      • 19. Lu, C., Zhao, Y., Men, K., et al: ‘Wide-area power system stabiliser based on model-free adaptive control’, IET Control Theory Appl., 2015, 9, (13), pp. 19962007.
    21. 21)
      • 7. Rao, P.S., Sen, I.: ‘Robust pole placement stabilizer design using linear matrix inequalities’, IEEE Trans. Power Syst., 2000, 15, (2), pp. 313319.
    22. 22)
      • 16. Khezri, R., Bevrani, H.: ‘Voltage performance enhancement of DFIG-based wind farms integrated in large-scale power systems: coordinated AVR and PSS’, Electr. Power Energy Syst., 2015, 73, (12), pp. 400410.
    23. 23)
      • 1. Sauer, P.W., Pai, M.A.: ‘Power system dynamics and stability’ (Prentice-Hall, Inc., New Jersey, 1998).
    24. 24)
      • 20. Elshafei, A.L., El-Metwally, K., Shaltout, A.: ‘A variable-structure adaptive fuzzy-logic stabilizer for single and multi-machine power systems’, Control Eng. Pract., 2005, 13, (4), pp. 314423.
    25. 25)
      • 24. Azimi, V., Nekoui, M.A., Fakharian, A.: ‘Robust multi-objective H2/H∞ tracking control based on T–S fuzzy model for a class of nonlinear uncertain drive systems’, Proc. IMechE I, J. Syst. Control Eng., 2012, 226, (8), pp. 11071118.
    26. 26)
      • 9. Castellanos, R., Messina, A.R., Sarmiento, H.: ‘A μ-analysis approach to power system stability robustness evaluation’, Electr. Power Syst. Res., 2008, 78, (2), pp. 192201.
    27. 27)
      • 8. Soliman, H.M., Shafiq, M.: ‘Robust stabilization of power systems with random abrupt changes’, IET Gener. Transm. Distrib., 2015, 9, (15), pp. 21592166.
    28. 28)
      • 18. Hasanvand, H., Arvan, M.R., Mozafari, B., et al: ‘Coordinated design of PSS and TCSC to mitigate interarea oscillations’, Electr. Power Energy Syst., 2016, 78, (5), pp. 194206.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.2064
Loading

Related content

content/journals/10.1049/iet-gtd.2016.2064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading