Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Wide-area coherency identification of generators in interconnected power systems with renewables

Identification of coherent generators (CGs) in power systems is one of the key steps in determining controlled islanding strategies. In this study, a wide-area measurement system (WAMS) and agglomerative hierarchical clustering (AHC) algorithm based coherency identification method is presented for interconnected power systems with aggregated renewable sources. First, the trajectories measured by WAMS are transformed to the centre of inertia based ones for better representing the dynamic behaviour of a given power system, and ten trajectory dissimilarity indexes are presented for determining the similarity of the trajectories of any two generators. Second, a CRITIC (CRiteria Importance Through Intercriteria Correlation) based method, in which entropy and the Spearman's rank correlation coefficient are integrated for reflecting the differences and correlations among multiple indexes, respectively, is presented to integrate the trajectory dissimilarity indexes. Next, the AHC algorithm is utilised to identify CGs. Finally, a modified New England–New York interconnected power system with a large number of renewables, a simplified actual Western Interconnection power system in North America and the eastern part of Guangdong power system in China with a recorded oscillation event happened are utilised to demonstrate the proposed wide-area coherency identification methodology.

References

    1. 1)
      • 17. Milano, F.: ‘An open source power system analysis toolbox’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 11991206.
    2. 2)
      • 21. ‘CSD-361 Phasor Measurement Unit’. Available at http://www.sifang-electric.com/index.php/en/products-solutions/generation/55-wide-area-measurement-system/220-csd-364-synchrophasor-measurement-unit, accessed 25 February 2017.
    3. 3)
      • 16. Pirie, W.: ‘Spearman rank correlation coefficient, encyclopedia of statistical sciences’ (Springer, 2006).
    4. 4)
      • 6. Avdakovic, S., Becirovic, E., Nuhanovic, A., et al: ‘Generator coherency using the wavelet phase difference approach’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 271278.
    5. 5)
      • 24. ‘Test Cases Library of Power System Sustained Oscillations’. Available at http://web.eecs.utk.edu/~kaisun/Oscillation, accessed 9 December 2016.
    6. 6)
      • 19. ‘TR-2000 Multi-Function Recorder-Overview’. Available at http://www.ametekpower.com/Fault-Recorders/TR-2000-Multi-Function-Recorder.aspx, accessed 25 February 2017.
    7. 7)
      • 15. Diakoulaki, D., Mavrotas, G., Papayannakis, L.: ‘Determining objective weights in multiple criteria problems: the CRITIC method’, Comput. Oper. Res., 1995, 22, (7), pp. 763770.
    8. 8)
      • 11. Mohammad, R.A., Mohammad, S.: ‘Intelligent out of step predictor for inter area oscillations using speed–acceleration criterion as a time matching for controlled islanding’, IEEE Trans. Smart Grid, 2016, PP, (99), pp. 19.
    9. 9)
      • 4. Vahidnia, A., Ledwich, G., Palmer, E., et al: ‘Generator coherency and area detection in large power systems’, IET Gener. Transm. Distrib., 2012, 6, (9), pp. 874883.
    10. 10)
      • 18. Maslennikov, S., Wang, B., Zhang, Q., et al: ‘A test cases library for methods locating the sources of sustained oscillations’. Proc. of IEEE PES General Meeting, Boston, MA, July 2016, pp. 15.
    11. 11)
      • 10. Lin, Z.Z., Wen, F.S., Zhao, J.H., et al: ‘Controlled islanding schemes for interconnected power systems based on coherent generator group identification and wide-area measurements’, J. Mod. Power Syst. Clean Energy, 2016, 4, (3), pp. 440453.
    12. 12)
      • 3. Susuki, Y., Mezic, I.: ‘Nonlinear koopman modes and coherency identification of coupled swing dynamics’, IEEE Trans. Power Syst., 2011, 26, (4), pp. 18941904.
    13. 13)
      • 23. Lu, C., Shi, B.N., Wu, X.C., et al: ‘Advancing China's smart grid: phasor measurement units in a wide-area management system’, IEEE Power Energy Mag., 2015, 13, (5), pp. 6071.
    14. 14)
      • 5. Ariff, M.A.M., Pal, B.C.: ‘Coherency identification in interconnected power system: an independent component analysis approach’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 17471755.
    15. 15)
      • 22. ‘PCS-996 Phasor Measurement Unit’. Available at http://www.nrec.com/en/product/PCS-996.html, accessed 25 February 2017.
    16. 16)
      • 7. Barocio, E., Pal, B.C., Thornhill, N.F., et al: ‘A dynamic mode decomposition framework for global power system oscillation analysis’, IEEE Trans. Power Syst., 2015, 30, (6), pp. 29022912.
    17. 17)
      • 2. Jiang, T., Jia, H.J., Yuan, H.Y., et al: ‘Projection pursuit: a general methodology of wide-area coherency detection in bulk power grid’, IEEE Trans. Power Syst., 2015, 31, (4), pp. 111.
    18. 18)
      • 14. Lee, J.G., Han, J.W., Whang, K.Y.: ‘Trajectory clustering: a partition-and-group framework’. Proc. of the 2007 ACM SIGMOD Int. Conf. on Management of Data, Beijing, China, June 2007, pp. 112.
    19. 19)
      • 9. Sun, K., Hur, K., Zhang, P.: ‘A new unified scheme for controlled power system separation using synchronized phasor measurements’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 15441554.
    20. 20)
      • 8. Gomez, O., Rios, M.A.: ‘Real time identification of coherent groups for controlled islanding based on graph theory’, IET. Gener. Transm. Distrib., 2015, 9, (8), pp. 748758.
    21. 21)
      • 1. Liu, S.W., Li, G.Y., Zhou, M.: ‘Power system transient stability analysis with integration of DFIGs based on center of inertia’, CSEE J. Power Energy Syst., 2016, 2, (2), pp. 2029.
    22. 22)
      • 20. ‘Model 1133A Power Sentinel’. Available at http://www.arbiter.com/catalog/product/model-1133a-power-sentinel.php#tabs-2, accessed 25 February 2017.
    23. 23)
      • 13. Zhang, Y., Zhang, Y., Meng, G., et al: ‘A wide area information based clustering recognition method of coherent generators’, Power Syst. Technol., 2015, 39, (10), pp. 28892893.
    24. 24)
      • 12. Zou, J.X., Peng, C., Xu, H.B., et al: ‘A fuzzy clustering algorithm-based dynamic equivalent modeling method for wind farm with DFIG’, IEEE Trans. Energy Convers., 2015, 30, (4), pp. 13291337.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.2053
Loading

Related content

content/journals/10.1049/iet-gtd.2016.2053
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address