http://iet.metastore.ingenta.com
1887

Power theft localisation using voltage measurements from distribution feeder nodes

Power theft localisation using voltage measurements from distribution feeder nodes

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a novel algorithm to locate regions in a distribution feeder, where power is being illegally tapped, is proposed. The basic requirements of the algorithm are voltage measuring devices located at distribution feeder nodes or transformers that can communicate data to the distribution substation. Initially, how voltage magnitude difference between successive nodes in a feeder can help identify possible locations of illegal tapping is shown. The technique is further refined by a normalised voltage double difference method, to pin-point the exact location of power theft. The algorithm does not require network parameters. Simulations are performed on the IEEE 34 node test feeder, to demonstrate the efficacy of this method.

References

    1. 1)
      • (2014)
        1. Emerging markets smart grid: outlook 2015’ (Northeast group, llc, 2014).
        .
    2. 2)
      • L. Dan , H. Bo .
        2. Dan, L., Bo, H.: ‘Advanced metering standard infrastructure for smart grid’. Proc. of China Int. Conf. Electricity Distribution, Shanghai, China, September 2012.
        . Proc. of China Int. Conf. Electricity Distribution
    3. 3)
      • R. Jiang , R. Lu , Y. Wang .
        3. Jiang, R., Lu, R., Wang, Y., et al: ‘Energy-theft detection issues for advanced metering infrastructure in smart grid’, Tsinghua Sci. Technol., 2014, 19, (2), pp. 105120.
        . Tsinghua Sci. Technol. , 2 , 105 - 120
    4. 4)
      • M. Erol-Kantarci , H.T. Mouftah .
        4. Erol-Kantarci, M., Mouftah, H.T.: ‘Smart grid forensic science: applications, challenges, and open issues’, IEEE Commun. Mag., 2013, 51, (1), pp. 6874.
        . IEEE Commun. Mag. , 1 , 68 - 74
    5. 5)
      • P. Kadurek , J. Blom , J.F.G. Cobben .
        5. Kadurek, P., Blom, J., Cobben, J.F.G., et al: ‘Theft detection and smart metering practices and expectations in the Netherlands’. IEE PES Innovative Smart Grid Technologies Conf. Europe, Gothenburg, Sweden, October 2010.
        . IEE PES Innovative Smart Grid Technologies Conf. Europe
    6. 6)
      • F.V.D. Bergh , P. Kadurek , S. Cobben .
        6. Bergh, F.V.D., Kadurek, P., Cobben, S., et al: ‘Electricity theft localization based on smart metering’. 21st Int. Conf. Electricity Distribution, Frankfurt, Germany, June 2011.
        . 21st Int. Conf. Electricity Distribution
    7. 7)
      • D. Nikovski , Z. Wang , A. Esenther . (2013)
        7. Nikovski, D., Wang, Z., Esenther, A., et al: ‘Smart meter data analysis for power theft detection’ (Mitsubishi Electric Research Laboratories, 2013).
        .
    8. 8)
      • C.J. Bandim , J.E.R. Alves , A.V. Pinto .
        8. Bandim, C.J., Alves, J.E.R., Pinto, A.V., et al: ‘Identification of energy theft and tampered meters using a central observer meter: a mathematical approach’. Proc. of IEEE PES Transmission and Distribution Conf. and Exposition, September 2003, pp. 163168.
        . Proc. of IEEE PES Transmission and Distribution Conf. and Exposition , 163 - 168
    9. 9)
      • S.A. Salinas , P. Li .
        9. Salinas, S.A., Li, P.: ‘Privacy-preserving energy theft detection in microgrids: a state estimation approach’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 883894.
        . IEEE Trans. Power Syst. , 2 , 883 - 894
    10. 10)
      • Y. Zhou , X. Chen , A.Y. Zomaya .
        10. Zhou, Y., Chen, X., Zomaya, A.Y., et al: ‘A dynamic programming algorithm for leveraging probabilistic detection of energy theft in smart home’, IEEE Trans. Emerg. Top. Comput., 2015, 3, (4), pp. 502513.
        . IEEE Trans. Emerg. Top. Comput. , 4 , 502 - 513
    11. 11)
      • S. Amin , G.A. Schwartz , A.A. Cardenas .
        11. Amin, S., Schwartz, G.A., Cardenas, A.A., et al: ‘Game-theoretic models of electricity theft detection in smart utility networks: providing new capabilities with advanced metering infrastructure’, IEEE Control Syst., 2015, 35, (1), pp. 6681.
        . IEEE Control Syst. , 1 , 66 - 81
    12. 12)
      • A.A. Cardenas , S. Amin , G.A. Schwartz .
        12. Cardenas, A.A., Amin, S., Schwartz, G.A., et al: ‘A game theory model for electricity theft detection and privacy-aware control in AMI systems’. Fiftieth Annual Allerton Conf. Allerton House, Illinois, USA, October 2012, pp. 18301837.
        . Fiftieth Annual Allerton Conf. Allerton House , 1830 - 1837
    13. 13)
      • W.H. Kersting . (2002)
        13. Kersting, W.H.: ‘Distribution system modeling and analysis’ (CRC Press, 2002).
        .
    14. 14)
      • R.M. Gardner , Y. Liu .
        14. Gardner, R.M., Liu, Y.: ‘Generation-load mismatch detection and analysis’, IEEE Trans. Smart Grid, 2012, 3, (1), pp. 105112.
        . IEEE Trans. Smart Grid , 1 , 105 - 112
    15. 15)
      • G. Gajjar , S.A. Soman .
        15. Gajjar, G., Soman, S.A.: ‘Auto detection of power system events using wide area frequency measurements’. National Power Systems Conf. (NPSC), Guwahati, India, 2014, pp. 16.
        . National Power Systems Conf. (NPSC) , 1 - 6
    16. 16)
      • (1981)
        16. ANSI/IEEE C57.91-1981: ‘Guide for loading mineral-oil-immersed overhead and pad-mounted distribution transformers’ (American National Standards Institute, Inc., 1981).
        .
    17. 17)
      • T. Sauter , M. Lobashov .
        17. Sauter, T., Lobashov, M.: ‘End-to-end communication architecture for smart grids’, IEEE Trans. Ind. Electron., 2012, 58, (4), pp. 12181228.
        . IEEE Trans. Ind. Electron. , 4 , 1218 - 1228
    18. 18)
      • S. Galli , A. Scaglione , Z. Wang .
        18. Galli, S., Scaglione, A., Wang, Z.: ‘For the grid and through the grid: the role of power line communications in the smart grid’, Proc. IEEE, 2011, 99, (6), pp. 9981027.
        . Proc. IEEE , 6 , 998 - 1027
    19. 19)
      • W. Meng , X. Wang , S. Liu .
        19. Meng, W., Wang, X., Liu, S.: ‘Distributed load sharing of an inverter-based microgrid with reduced communication’, IEEE Trans. Smart Grid, 2016, PP, (99), pp. 11.
        . IEEE Trans. Smart Grid , 99 , 1 - 1
    20. 20)
      • 20. ‘Distribution Test Feeders’, http://ewh.ieee.org/soc/pes/dsacom/testfeeders/, accessed 1 October 2016.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.2011
Loading

Related content

content/journals/10.1049/iet-gtd.2016.2011
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address