http://iet.metastore.ingenta.com
1887

Structure preserving energy function including the synchronous generator magnetic saturation and sub-transient models

Structure preserving energy function including the synchronous generator magnetic saturation and sub-transient models

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Generation, Transmission & Distribution — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents, develops and evaluates a structure preserving energy function based on the sixth-order generator model which is formulated with respect to the centre-of-inertia. Flux saturation and leakage flux effects are also included in the model. Each load is represented as voltage-dependent load. It is demonstrated that the proposed energy function satisfies the energy function required conditions. This study also derives a modified energy function from the original development which provides a simpler representation with less computational need while preserving the same accuracy. Physical interpretation of each term of the modified energy function is also discussed. To evaluate and verify the accuracy of the modified energy function, the critical clearing time using potential energy boundary surface method and the time-domain simulation results of a test system are presented. The calculation of the critical energy based on the proposed energy function differs by at least 10% (more accurate) compared with the existing energy functions.

References

    1. 1)
      • M. Pavella , D. Ernst , D. Ruiz-Vega . (2000)
        1. Pavella, M., Ernst, D., Ruiz-Vega, D.: ‘Transient stability of power systems: a unified approach to assessment and control’ (Kluwer, 2000).
        .
    2. 2)
      • H.D. Chiang , C.C. Chu , G. Cauley .
        2. Chiang, H.D., Chu, C.C., Cauley, G.: ‘Direct stability analysis of electric power systems using energy functions: theory, applications, and perspective’, Proc. IEEE, 1995, 83, (11), pp. 14971529.
        . Proc. IEEE , 11 , 1497 - 1529
    3. 3)
      • U. Gabrijel , R. Mihalic .
        3. Gabrijel, U., Mihalic, R.: ‘Direct methods for transient stability assessment in power systems comprising controllable series devices’, IEEE Trans. Power Syst., 2002, 17, (4), pp. 11161122.
        . IEEE Trans. Power Syst. , 4 , 1116 - 1122
    4. 4)
      • M. Ghandhari , G. Andersson , I.A. Hiskens .
        4. Ghandhari, M., Andersson, G., Hiskens, I.A.: ‘Control Lyapunov functions for controllable series devices’, IEEE Trans. Power Syst,, 2001, 16, (4), pp. 689694.
        . IEEE Trans. Power Syst , 4 , 689 - 694
    5. 5)
      • P.C. Magnusson .
        5. Magnusson, P.C.: ‘The transient-energy method of calculating stability’, Trans. AIEE, 1947, 66, (1), pp. 747755.
        . Trans. AIEE , 1 , 747 - 755
    6. 6)
      • P.D. Aylett .
        6. Aylett, P.D.: ‘The energy-integral criterion of transient stability limits of power systems’, Proc. IEE C, Monogr., 1958, 105, (8), pp. 527536.
        . Proc. IEE C, Monogr. , 8 , 527 - 536
    7. 7)
      • A.H. El-Abiad , K. Nagappan .
        7. El-Abiad, A.H., Nagappan, K.: ‘Transient stability regions of multimachine power systems’, IEEE Trans. Power Appar. Syst., 1966, 85, (2), pp. 169179.
        . IEEE Trans. Power Appar. Syst. , 2 , 169 - 179
    8. 8)
      • G.E. Gless .
        8. Gless, G.E.: ‘Direct method of Lyapunov applied to transient power system stability’, IEEE Trans. Power Appar. Syst., 1966, 85, (2), pp. 159168.
        . IEEE Trans. Power Appar. Syst. , 2 , 159 - 168
    9. 9)
      • M.A. Pai , V. Rai .
        9. Pai, M.A., Rai, V.: ‘Lyapunov–Popov stability analysis of synchronous machine with flux decay and voltage regulator’, Int. J. Control, 1974, 19, (4), pp. 817829.
        . Int. J. Control , 4 , 817 - 829
    10. 10)
      • H. Sasaki .
        10. Sasaki, H.: ‘An approximate incorporation of field flux decay into transient stability analyses of multimachine power systems by the second method of Lyapunov’, IEEE Trans. Power Appar. Syst., 1979, 98, (2), pp. 473483.
        . IEEE Trans. Power Appar. Syst. , 2 , 473 - 483
    11. 11)
      • K.R. Padiyar . (2013)
        11. Padiyar, K.R.: ‘Structure preserving energy functions in power systems: theory and applications’ (CRC Press, 2013).
        .
    12. 12)
      • A.R. Bergen , D.J. Hill .
        12. Bergen, A.R., Hill, D.J.: ‘A structure preserving model for power system stability analysis’, IEEE Trans. Power Appar. Syst., 1981, 100, (1), pp. 2535.
        . IEEE Trans. Power Appar. Syst. , 1 , 25 - 35
    13. 13)
      • N. Tsolas , A. Arapostathis , P.P. Varaiya .
        13. Tsolas, N., Arapostathis, A., Varaiya, P.P.: ‘A structure preserving energy function for power system transient stability analysis’, IEEE Trans. Circuits Syst., 1985, 32, (10), pp. 10411049.
        . IEEE Trans. Circuits Syst. , 10 , 1041 - 1049
    14. 14)
      • N. Narasimhamurthi , M. Musavi .
        14. Narasimhamurthi, N., Musavi, M.: ‘A generalized energy function for transient stability analysis of power systems’, IEEE Trans. Circuits Syst., 1984, 31, (7), pp. 637645.
        . IEEE Trans. Circuits Syst. , 7 , 637 - 645
    15. 15)
      • K.R. Padiyar , H.S.Y. Sastry .
        15. Padiyar, K.R., Sastry, H.S.Y.: ‘Topological energy-function analysis of stability of power systems’, Int. J. Electr. Power Energy Syst., 1987, 9, (1), pp. 916.
        . Int. J. Electr. Power Energy Syst. , 1 , 9 - 16
    16. 16)
      • K.R. Padiyar , K.K. Ghosh .
        16. Padiyar, K.R., Ghosh, K.K.: ‘Direct stability evaluation of power systems with detailed generator models using structure-preserving energy functions’, Int. J. Electr. Power Energy Syst., 1989, 11, (1), pp. 4756.
        . Int. J. Electr. Power Energy Syst. , 1 , 47 - 56
    17. 17)
      • P.W. Sauer , M.A. Pai . (1998)
        17. Sauer, P.W., Pai, M.A.: ‘Power system dynamics and stability’ (Prentice-Hall, 1998).
        .
    18. 18)
      • 18. IEEE Std. 1110-2002: ‘IEEE guide for synchronous generator modeling practices and applications in power system stability analyses’, 2003.
        .
    19. 19)
      • R.D. Dunlop , A.C. Parikh .
        19. Dunlop, R.D., Parikh, A.C.: ‘Verification of synchronous machine modeling in stability studies: comparative tests of digital and physical scale model power system simulations’, IEEE Trans. Power Appar. Syst., 1979, 98, (2), pp. 369378.
        . IEEE Trans. Power Appar. Syst. , 2 , 369 - 378
    20. 20)
      • P.L. Dandeno .
        20. Dandeno, P.L.: ‘Current usage and suggested practices in power system stability simulations for synchronous machines’, IEEE Power Eng. Rev., 1986, 6, (3), p. 35.
        . IEEE Power Eng. Rev. , 3 , 35
    21. 21)
      • S. Hamidifar , N.C. Kar .
        21. Hamidifar, S., Kar, N.C.: ‘A novel approach to saturation characteristics modeling and its impact on synchronous machine transient stability analysis’, IEEE Trans. Energy Convers., 2012, 27, (1), pp. 139150.
        . IEEE Trans. Energy Convers. , 1 , 139 - 150
    22. 22)
      • N.C. Kar , T. Murata , J. Tamura .
        22. Kar, N.C., Murata, T., Tamura, J.: ‘A new method to evaluate the q-axis saturation characteristic of cylindrical-rotor synchronous generator’, IEEE Trans. Energy Convers., 2000, 15, (3), pp. 269276.
        . IEEE Trans. Energy Convers. , 3 , 269 - 276
    23. 23)
      • (2013)
        23. Siemens PTI: ‘PSS/E 33.0 documentation’, 2013.
        .
    24. 24)
      • (2014)
        24. DIgSILENT: ‘PowerFactory 15.0 user manual’, 2014.
        .
    25. 25)
      • 25. IEEE: ‘Report on the 39-bus system (New England Reduced Model)’, IEEE PES Task Force on Benchmark Systems for Stability Controls, 2013.
        .
    26. 26)
      • 26. IEEE: ‘Report on the 68-bus, 16-machine, 5-area system’, IEEE PES Task Force on Benchmark Systems for Stability Controls, 2013.
        .
    27. 27)
      • 27. IEEE: ‘Report on the 14-generator system (Australian reduced model)’, IEEE PES Task Force on Benchmark Systems for Stability Controls, 2013.
        .
    28. 28)
      • 28. IEEE Std. 421.5-2005: ‘IEEE recommended practice for excitation system models for power system stability studies’, 2006.
        .
    29. 29)
      • M.A. Pai . (1981)
        29. Pai, M.A.: ‘Power system stability: analysis by direct method of Lyapunov’ (North Holland, 1981).
        .
    30. 30)
      • M.A. Pai . (1989)
        30. Pai, M.A.: ‘Energy function analysis for power system stability’ (Kluwer Academic Publishers, 1989).
        .
    31. 31)
      • J. Machowski , J.W. Bialek , J. Bumby . (2011)
        31. Machowski, J., Bialek, J.W., Bumby, J.: ‘Power system dynamics: stability and control’ (John Wiley & Sons, 2011, 2nd edn.).
        .
    32. 32)
      • B. Pal , B. Chaudhuri . (2005)
        32. Pal, B., Chaudhuri, B.: ‘Robust control in power systems’ (Springer Science & Business Media, 2005).
        .
    33. 33)
      • N. Kakimoto , Y. Ohnogi , H. Matsuda .
        33. Kakimoto, N., Ohnogi, Y., Matsuda, H., et al: ‘Transient stability analysis of large-scale power systems by Lyapunov's direct method’, IEEE Trans. Power Appar. Syst., 1984, 103, (1), pp. 160167.
        . IEEE Trans. Power Appar. Syst. , 1 , 160 - 167
    34. 34)
      • M.R. Younis , R. Iravani .
        34. Younis, M.R., Iravani, R.: ‘Wide-area damping control for inter-area oscillations: a comprehensive review’. IEEE Electrical Power & Energy Conf. (EPEC), Halifax, Canada, August 2013.
        . IEEE Electrical Power & Energy Conf. (EPEC)
    35. 35)
      • J. Machowski , A. Smolarczyk , J.W. Bialek .
        35. Machowski, J., Smolarczyk, A., Bialek, J.W.: ‘Power system transient stability enhancement by co-ordinated fast valving and excitation control of synchronous generators’. CIGRE Symp. ‘Working Plants and Systems Harder’, London, England, June 1999.
        . CIGRE Symp. ‘Working Plants and Systems Harder’
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.2005
Loading

Related content

content/journals/10.1049/iet-gtd.2016.2005
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address