access icon free Allocation of PMUs for power system-wide inertial frequency response estimation

This study proposes a novel approach for estimating the power system-wide inertial frequency response (IFR) using strategically allocated phasor measurement units (PMUs). First, a method is presented to identify generator clusters that form aggregated sources of inertial response. Then, the collective dynamics of each cluster are synthesised using PMUs placed at key network buses. These buses are identified as the inertial centres which accurately represent the centre of inertia motion. The proposed synthesis process ultimately yields IFR estimates at zonal and global (system-wide) scales. Simulation results demonstrate the proposed methodology's ability to accurately estimate IFR under several operating conditions, network topology changes, and disturbances.

Inspec keywords: frequency estimation; frequency response; phasor measurement

Other keywords: PMU allocation; centre of inertia motion; power system-wide inertial frequency response estimation; network buses; generator cluster identification; phasor measurement units; network topology; IFR estimates

Subjects: Other topics in statistics; Power system measurement and metering

References

    1. 1)
      • 25. Dutot, A., Olivier, D., Savin, G.: ‘Centroids: a decentralized approach’. Proc. ECCS – European Conf. Complex Systems, 2011, pp. 16.
    2. 2)
      • 32. Chamorro, H. R., Ordonez, C. A., Peng, J. C., et al: ‘Non-synchronous generation impact on power systems coherency’, IET Gener. Transm. Distrib., 2016, 10, (10), pp. 24432453.
    3. 3)
      • 37. Rudez, U., Mihalic, R.: ‘WAMS based underfrequency load shedding with short-term frequency prediction’, IEEE Trans. Power Deliv., 2016, 34, (4), pp. 19121920.
    4. 4)
      • 31. Vahidnia, A., Ledwich, G., Palmer, E., et al: ‘Generator coherency and area detection in large power systems’, IET Gener. Transm. Distrib., 2012, 6, (9), pp. 874883.
    5. 5)
      • 35. Brown, M., Biswal, M., Member, B. S., et al: ‘Characterizing and quantifying noise in PMU data’. IEEE Power and Energy Society General Meeting, 2016, pp. 16.
    6. 6)
      • 20. Rios, M., Gomez, O.: ‘Identification of coherent groups and PMU placement for inter-area monitoring based on graph theory’. Proc. IEEE Innovative Smart Grid Technologies Latin America, 2011, pp. 17.
    7. 7)
      • 1. Wu, L., Infield, D.: ‘Power system frequency management challenges – a new approach to assessing the potential of wind capacity to aid system frequency stability’, IET Renew. Power Gen., 2014, 8, (7), pp. 733739.
    8. 8)
      • 18. Sanchez-Garcia, R. J., Fennelly, M., Norris, S., et al: ‘Hierarchical spectral clustering of power grids’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 22292237.
    9. 9)
      • 16. Cepeda, J. C., Rueda, J. L., Colome, D. G., et al: ‘Real-time transient stability assessment based on centre-of-inertia estimation from phasor measurement unit records’, IET Gener. Transm. Distrib., 2014, 8, (8), pp. 13631376.
    10. 10)
      • 3. Lara-Jimenez, J. D., Ramirez, J. M.: ‘Inertial frequency response estimation in a power system with high wind energy penetration’. Proc. IEEE PowerTech, 2015, pp. 16.
    11. 11)
      • 14. Elgerd, O. I.: ‘Electric energy systems theory: an introduction’ (McGraw-Hill, 1982).
    12. 12)
      • 34. de la O Serna, J. A.: ‘Synchrophasor measurement with polynomial phase-locked-loop Taylor–Fourier filters’, IEEE Trans. Instrum. Meas., 2016, 44, (2), pp. 328337.
    13. 13)
      • 22. Anderson, P. M., Fouad, A. Z.: ‘Power system control and stability’ (John Wiley & Sons, 2008).
    14. 14)
      • 12. Teng, F., Trovato, V., Strbac, G.: ‘Stochastic scheduling with inertia-dependent fast frequency response requirements’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 15571566.
    15. 15)
      • 10. Winter, W., Elkington, K., Bareux, G., et al: ‘Pushing the limits – Europes new grid: innovative tools to combat transmission bottlenecks and reduced inertia’, IEEE Power Energy Mag, 2015, 13, (1), pp. 6074.
    16. 16)
      • 36. Molina, D., Venayagamoorthy, G. K., Liang, J., et al: ‘Intelligent local area signals based damping of power system oscillations using virtual generators and approximate dynamic programming’, IEEE Trans. Smart Grid, 2013, 4, (1), pp. 498508.
    17. 17)
      • 11. Ashton, P. M., Saunders, C. S., Taylor, G., et al: ‘Inertia estimation of the GB power system using synchrophasor measurements’, IEEE Trans Power Syst., 2015, 30, (2), pp. 701709.
    18. 18)
      • 4. Ulbig, A., Borsche, T. S., Andersson, G.: ‘Impact of low rotational inertia on power system stability and operation’. Proc. IFAC World Congress, 2014, pp. 110.
    19. 19)
      • 9. Wall, P., Terzija, V.: ‘Simultaneous estimation of the time of disturbance and inertia in power systems’, IEEE Trans. Power Deliv., 2014, 29, (4), pp. 20182031.
    20. 20)
      • 29. Rogers, G.: ‘Power system oscillations’ (Springer, 2000).
    21. 21)
      • 21. Gomez, O., Rios, M. A.: ‘Real time identification of coherent groups for controlled islanding based on graph theory’, IET Gener. Transm. Distrib., 2015, 9, (8), pp. 748758.
    22. 22)
      • 2. Ahmadi, H., Ghasemi, H.: ‘Maximum penetration level of wind generation considering power system security limits’, IET Gener. Transm. Distrib., 2012, 6, (11), pp. 11641170.
    23. 23)
      • 30. Milano, F.: ‘Power system modelling and scripting’ (Springer, 2010).
    24. 24)
      • 19. Quiros–Tortos, J., Sanchez-Garcia, R., Brodzki, J., et al: ‘Constrained spectral clustering-based methodology for intentional controlled islanding of large-scale power systems’, IET Gener. Transm. Distrib., 2015, 9, (1), pp. 3142.
    25. 25)
      • 17. Von Luxburg, U.: ‘A tutorial on spectral clustering’, Stat. Comput., 2007, 17, (4), pp. 395416.
    26. 26)
      • 27. Hopcroft, J., Kannan, R.: ‘Foundations of data science’. Available at http://www.cs.cornell.edu/jeh/nosolutions90413.pdf, accessed 12 November 2016.
    27. 27)
      • 24. Dijkstra, E.W.: ‘A note on two problems in connexion with graphs’, Numer. Math., 1959, 1, (1), pp. 269271.
    28. 28)
      • 5. Wang, Y., Silva, V., Lopez–Botet–Zulueta, M.: ‘Impact of high penetration of variable renewable generation on frequency dynamics in the continental Europe interconnected system’, IET Renew. Power Gen., 2016, 10, (1), pp. 1016.
    29. 29)
      • 33. Wu, D., Lin, C., Perumalla, V., et al: ‘Impact of grid structure on dynamics of interconnected generators’, IEEE Trans. Power Syst., 2014, 29, (5), pp. 23292337.
    30. 30)
      • 13. Kamwa, I., Pradhan, A. K., Joos, G.: ‘Automatic segmentation of large power systems into fuzzy coherent areas for dynamic vulnerability assessment’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 19741985.
    31. 31)
      • 28. Milano, F., Vanfretti, L., Morataya, J. C.: ‘An open source power system virtual laboratory: the PSAT case and experience’, IEEE Trans. Educ., 2008, 51, (1), pp. 1723.
    32. 32)
      • 15. Machowski, J., Bialek, J. W., Bumby, J. R.: ‘Power system dynamics: stability and control’ (John Wiley & Sons, 2011).
    33. 33)
      • 23. Fiedler, M.: ‘A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory’, Czech. Math. J., 1975, 25, (4), pp. 619633.
    34. 34)
      • 6. Inoue, T., Taniguchi, H., Ikeguchi, Y., et al: ‘Estimation of power system inertia constant and capacity of spinning–reserve support generators using measured frequency transients’, IEEE Trans. Power Syst., 1999, 12, (1), pp. 136143.
    35. 35)
      • 7. Chassin, D. P., Huang, Z., Donnelly, M. K., et al: ‘Estimation of WECC system inertia using observed frequency transients’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 11901192.
    36. 36)
      • 8. Sharma, S., Huang, S.–H., Sarma, N.: ‘System inertial frequency response estimation and impact of renewable resources in ERCOT interconnection’. Proc. IEEE Power and Energy Society General Meeting, 2011, pp. 16.
    37. 37)
      • 26. Pang-Ning Tan, M. S., Kumar, V.: ‘Introduction to data mining’ (Addison-Wesley, 2005).
    38. 38)
      • 38. Dosiek, L.: ‘A framework for assessing methods of deriving frequency data from PMU voltage angles in the presence of measurement noise’. North American Power Symp., 2016, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1951
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1951
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading