access icon free Fully distributed multi-area dynamic economic dispatch method with second-order convergence for active distribution networks

In active distribution networks, distributed generators are integrated into microgrids or geographically distributed subsystems. They may belong to different owners and are operated independently to preserve privacy. Therefore, fully distributed economic dispatch (ED) methods are needed and most existing algorithms show first-order convergence. This study introduces a fully distributed dynamic ED with second-order convergence, which is based on a parallel primal–dual interior-point algorithm with a matrix-splitting technique. In this method, each area optimises its own problem with limited information exchanged with its neighbours, and no central coordinator is needed. Numerical tests demonstrate that the algorithm can converge at a second-order rate. On the basis of a peer-to-peer communication paradigm, this method can achieve a global optimum while the privacy of each area is obliquely protected.

Inspec keywords: power generation dispatch; power distribution economics; power generation economics; convergence of numerical methods; matrix algebra; optimisation; distributed power generation

Other keywords: fully distributed dynamic ED; parallel primal–dual interior-point algorithm; second-order convergence; numerical tests; peer-to-peer communication paradigm; active distribution network; microgrid; distributed generator; matrix-splitting technique; geographically distributed subsystems; fully distributed multiarea dynamic economic dispatch method

Subjects: Linear algebra (numerical analysis); Power system management, operation and economics; Distribution networks; Optimisation techniques; Distributed power generation

References

    1. 1)
      • 20. Minot, A., Lu, Y.M., Li, N.: ‘A parallel primal–dual interior-point method for DC optimal power flow’. 2016 Power Systems Computation Conf. (PSCC), Genoa, 2016, pp. 17.
    2. 2)
      • 21. Victoire, T.A.A., Jeyakumar, A.E.: ‘Reserve constrained dynamic dispatch of units with valve-point effects’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 12731282.
    3. 3)
      • 25. Liu, J., Sherali, H.D.: ‘A distributed Newton's method for joint multi-hop routing and flow control: theory and algorithm’. INFOCOM, 2012 Proc. IEEE, Orlando, FL, 2012, pp. 24892497.
    4. 4)
      • 22. Wu, W., Chen, J., Zhang, B., et al: ‘A robust wind power optimization method for look-ahead power dispatch’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 507515.
    5. 5)
      • 26. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: ‘MATPOWER: steady-state operations, planning and analysis tools for power systems research and education’, IEEE Trans. Power Syst., 2011, 26, (1), pp. 1219.
    6. 6)
      • 7. Tavakoli, A., Negnevitsky, M., Muttaqi, K.M.: ‘A coordinated approach to energy exchange between electric vehicle load aggregators and wind generation companies under uncertainty’. 2015 IEEE PES General Meeting, 2015, pp. 15.
    7. 7)
      • 23. Zhao, W., Liu, M., Zhu, J., et al: ‘Fully decentralised multi-area dynamic economic dispatch for large-scale power systems via cutting plane consensus’, IET Gener. Transm. Distrib., 2016, 10, (10), pp. 24862495.
    8. 8)
      • 5. Chen, S., Chen, Q., Xu, Y.: ‘Strategic bidding and compensation mechanism for a load aggregator with direct thermostat control capabilities’, IEEE Trans. Smart Grid, 2016, PP, (99), p. 1.
    9. 9)
      • 13. Yang, S., Liu, Q., Wang, J.: ‘A multi-agent system with a proportional-integral protocol for distributed constrained optimization’, IEEE Trans. Autom. Control, 2016, PP, (99), p. 1.
    10. 10)
      • 19. Yuan, D., Ho, D.W.C., Xu, S.: ‘Regularized primal–dual subgradient method for distributed constrained optimization’, IEEE Trans. Cybern., 2016, 46, (9), pp. 21092118.
    11. 11)
      • 4. Giannakis, G.B., Kekatos, V., Gatsis, N., et al: ‘Monitoring and optimization for power grids: a signal processing perspective’, IEEE Signal Process. Mag., 2013, 30, (5), pp. 107128.
    12. 12)
      • 1. Lin, J., Wan, C., Song, Y., et al: ‘Situation awareness of active distribution network: roadmap, technologies, and bottlenecks’, CSEE JPES, 2016, 2, (3), pp. 3542.
    13. 13)
      • 8. Tron, R., Thomas, J., Loianno, G., et al: ‘A distributed optimization framework for localization and formation control: applications to vision-based measurements’, IEEE Control Syst., 2016, 36, (4), pp. 2244.
    14. 14)
      • 18. Zhu, H., Li, N.: ‘Asynchronous local voltage control in power distribution networks’. 2016 IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016, pp. 34613465.
    15. 15)
      • 10. Abdallah, A., Shen, X.: ‘Lightweight security and privacy preserving scheme for smart grid customer-side networks’, IEEE Trans. Smart Grid, 2015, PP, (99), p. 1.
    16. 16)
      • 29. Wibowo, R.S., Firmansyah, K.R., Aryani, N.K., et al: ‘Dynamic economic dispatch of hybrid microgrid with energy storage using quadratic programming’. 2016 IEEE Region Tenth Conf. (TENCON), Singapore, 2016, pp. 667670.
    17. 17)
      • 17. Zhang, W., Liu, W., Wang, X., et al: ‘Online optimal generation control based on constrained distributed gradient algorithm’, IEEE Trans. Power Syst., 2015, 30, (1), pp. 3545.
    18. 18)
      • 12. Zheng, W., Wu, W., Zhang, B., et al: ‘Fully distributed multi-area economic dispatch method for active distribution networks’, IET Gener. Transm. Distrib., 2015, 9, (12), pp. 13411351.
    19. 19)
      • 15. Wang, Z., Wu, W., Zhang, B.: ‘A fully distributed power dispatch method for fast frequency recovery and minimal generation cost in autonomous microgrids’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 1931.
    20. 20)
      • 14. Makhdoumi, A., Ozdaglar, A.: ‘Convergence rate of distributed ADMM over networks’, IEEE Trans. Autom. Control, 2017, PP, (99), p. 1, DOI: 10.1109/TAC.2017.2677879.
    21. 21)
      • 11. Tai, X., Lin, Z., Fu, M., et al: ‘A new distributed state estimation technique for power networks’. 2013 American Control Conf., 2013, pp. 33383343.
    22. 22)
      • 16. Loukarakis, E., Dent, C.J., Bialek, J.W.: ‘Decentralized multi-period economic dispatch for real-time flexible demand management’, IEEE Trans. Power Syst., 2016, 31, (1), pp. 672684.
    23. 23)
      • 3. Qin, C., Ju, P., Wu, F., et al: ‘An efficient multi-area networks-merging model for power system online dynamic modeling’, CSEE JPES, 2015, 1, (4), pp. 3743.
    24. 24)
      • 28. Augustine, N., Suresh, S., Moghe, P., et al: ‘Economic dispatch for a microgrid considering renewable energy cost functions’. Innovative Smart Grid Technologies (ISGT), IEEE PES, 2012, pp. 17.
    25. 25)
      • 2. Hidalgo, R., Abbey, C., Joos, G.: ‘A review of active distribution networks enabling technologies’. IEEE PES General Meeting, 2010, pp. 19.
    26. 26)
      • 24. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge University Press, New York, NY, USA, 2004).
    27. 27)
      • 6. Hu, J., Cao, J., Guerrero, J.M., et al: ‘Improving frequency stability based on distributed control of multiple load aggregators’, IEEE Trans. Smart Grid, 2016, PP, (99), pp. 115.
    28. 28)
      • 9. Giri, J., Parashar, M., Trehern, J., et al: ‘The situation room: control center analytics for enhanced situational awareness’, IEEE Power Energy Mag., 2012, 10, (5), pp. 2439.
    29. 29)
      • 27. Venkatesh, B., Chandramohan, S., Kayalvizhi, N., et al: ‘Optimal reconfiguration of radial distribution systems using artificial intelligence methods’. IEEE Toronto Int. Conf. Science and Technology for Humanity (TIC-STH), 2009, pp. 660665.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1945
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1945
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading