access icon free Design and implementation of low-cost universal smart energy meter with demand side load management

The authors propose, design, and implement a low-cost universal smart energy meter (USEM) with demand-side load management. The meter can be used in the postpaid and prepaid modes with flexible tariff plans such as time of use, block rate tariff, and their combination. The smart meter comprises of a potential transformer, current transformer, and microcontroller unit with an embedded communication module. The connectivity among the utility authority, the smart meter, and consumer is established by authority identification number, meter identification number, and user identification number using the cellular network. The load management option of the meter controls electrical loads and provides emergency power during the power shortage. The USEM can be configured and reconfigured remotely simply by short message service without changing hardware. Besides, energy consumption status, meter tampering, and fault at the distribution end can be monitored with the proposed metering system. Here, a prototype of the smart meter is presented, and its effectiveness, flexibility, and versatility are experimentally demonstrated.

Inspec keywords: smart meters; power meters; demand side management

Other keywords: user identification number; embedded communication module; potential transformer; energy consumption; microcontroller unit; USEM; flexible tariff plans; meter tampering; demand side load management; meter identification number; cellular network; authority identification number; block rate tariff; time of use; current transformer; low-cost universal smart energy meter; distribution fault

Subjects: Power and energy measurement; Power system management, operation and economics; Power system measurement and metering

References

    1. 1)
      • 35. Chu, C.M., Jong, T.L.: ‘A novel direct air-conditioning load control method’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 13561363.
    2. 2)
      • 13. Khalifa, T., Naik, K., Nayak, A.: ‘A survey of communication protocols for automatic meter reading applications’, IEEE Commun Surv. Tut., 2010, 13, (2), pp. 168182.
    3. 3)
      • 31. Loss, P.A.V., Lamego, M.M., Soma, G.C.D., et al: ‘A single phase microcontroller based energy meter’. IEEE Conf. Instrumentation and Measurement Technology, Minnesota, USA, May 1998, pp. 797800.
    4. 4)
      • 12. Munñoz, A.M., Rosa, J.J.G.D.L.: ‘Integrating power quality to automated meter reading’, IEEE Ind. Electron. Mag., 2008, 2, (2), pp. 1018.
    5. 5)
      • 6. Sauter, T., lobashov, M.: ‘End-to-end communication architecture for smart grids’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12181228.
    6. 6)
      • 37. Goudarzi, H., Hatami, S., Pedram, M.: ‘Demand-side load scheduling incentivized by dynamic energy prices’. IEEE Int. Conf. Smart Grid Communications, Brussels, Belgium, October 2011, pp. 351356.
    7. 7)
      • 10. Corral, P., Coronado, B., Lima, A.C.D.C., et al: ‘Design of automatic meter reading based on zigbee’, IEEE Trans. Latin Am., 2012, 10, (1), pp. 11501155.
    8. 8)
      • 14. Mohassel, R.R., Fung, A.S., Fung, F., et al: ‘Application of advanced metering infrastructure in smart grids’. Mediterranean Conf. of Control and Automation, Palermo, Italy, June 2014, pp. 822828.
    9. 9)
      • 21. Landi, C., Merola, P., Ianniello, G.: ‘ARM-based energy management system using smart meter and web server’. Instrumentation and Measurement Technology Conf., Hangzhou, China, May 2011, pp. 15.
    10. 10)
      • 23. Rozell, D.J.: ‘Fair dynamic pricing for advanced metering infrastructure’, Strategic Plan. Energy Environ., 2014, 34, pp. 2638.
    11. 11)
      • 26. Gentile, C., Griffith, D., Souryal, M.: ‘Wireless network deployment in the smart grid: design and evaluation issues’, IEEE Trans. Ind. Electron., 2012, 26, (6), pp. 4853.
    12. 12)
      • 5. Liu, N., Chen, J., Zhu, L., et al: ‘A key management scheme for secure communications of advanced metering infrastructure in smart grid’, IEEE Ind. Electron. Mag., 2013, 60, (10), pp. 47464756.
    13. 13)
      • 32. Atmel Corporation: ‘ATmega2560 data sheet’, California, U.S.A.
    14. 14)
      • 17. Gungor, V.C., Lu, B.: ‘Opportunities and challenges of wireless sensor networks in smart grid’, IEEE Trans. Ind. Electron., 2010, 57, (10), pp. 35573564.
    15. 15)
      • 11. Li, L., Hu, X., Zhang, W.: ‘Design of an ARM-based power meter having WIFI wireless communication module’. IEEE Conf. Industrial Electronics and Applications, Xian, China, May 2009, pp. 403407.
    16. 16)
      • 20. Hu, Q., Li, F.: ‘Hardware design of smart home energy management system with dynamic price response’, IEEE Trans. Smart Grid, 2013, 4, (4), pp. 18781887.
    17. 17)
      • 1. Weranga, K.S.K., Kumarawadu, S., Chandima, D.P.: ‘Smart metering design and applications’ (Springer Briefs in Applied Sciences and Technology, 2013).
    18. 18)
      • 7. Lee, S., Wu, C., Chiou, M., et al: ‘Design of an automatic meter reading system [electricity metering’. Int. Conf. on Industrial Electronics, Control, and Instrumentation, Taipei, Taiwan, August 1996, pp. 631633.
    19. 19)
      • 22. Pereira, R., Figueiredo, J., Melicio, R., et al: ‘Consumer energy management system with integration of smart meters’, Elsevier Energy Rep., 2015, 1, pp. 2229.
    20. 20)
      • 2. Zaballos, A., Vallejo, A., Majoral, M., et al: ‘Survey and performance comparison of AMR over PLC standards’, IEEE Trans. Power Deliv., 2009, 24, (2), pp. 604613.
    21. 21)
      • 25. Gungor, V.C., Hancke, G.P.: ‘Industrial wireless sensor networks: challenges, design principles, and technical approaches’, IEEE Trans. Ind. Electron., 2009, 56, (10), pp. 42584265.
    22. 22)
      • 18. Kostková, K., Omelina, P., Kyčina, P., et al: ‘An introduction to load management’, Elsevier Electric Power Syst. Res., 2013, 95, pp. 184191.
    23. 23)
      • 27. Gungor, V.C., Sahin, D., Kocak, T., et al: ‘Smart grid technologies: communication technologies and standards’, IEEE Trans. Ind. Inf., 2011, 7, (4), pp. 529539.
    24. 24)
      • 28. International Energy Agency: ‘ICT facts & figures’ (International Telecommunication Union, 2015).
    25. 25)
      • 3. Franek, L, Šťastný, S., Fiedler, P.: ‘Prepaid energy in time of smart metering’, IFAC Proc. Volumes, 2013, 46, (28), pp. 428433.
    26. 26)
      • 34. Heffner, G.C., Goldman, C.A., Moezzi, M.M.: ‘Innovative approaches to verifying demand response of water heater load control’, IEEE Trans. Power Deliv., 2006, 21, (1), pp. 388397.
    27. 27)
      • 15. Benzi, F., Anglani, N., Bassi, E., et al: ‘Electricity smart meters interfacing the households’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 44874494.
    28. 28)
      • 8. Sivaneasan, B., So, P.L., Gunawan, E.: ‘A new routing protocol for PLC-based AMR systems’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 26132620.
    29. 29)
      • 30. Haque, M.M., Hossain, M.K., Ali, M.M., et al: ‘Microcontroller based single phase digital prepaid energy meter improved metering and billing system’, Int. J. Power Electron. Drive Syst., 2011, 1, (2), pp. 139147.
    30. 30)
      • 24. Giubbini, P.: ‘Method and system for remote updates of meters for metering consumption of electricity, water or gas’. U.S. Patent 8,102,277 B2, January 2012.
    31. 31)
      • 9. Koav, B.S., Cheah, S.S., Sng, Y.H., et al: ‘Design and implementation of bluetooth energy meter’. Inf. Commun. Signal Process., Mandarin Gallery, Singapore, December 2003, pp. 14741477.
    32. 32)
      • 16. Tan, A.C., Lee, C.H.R., Mok, V.H.: ‘Automatic power meter reading system using GSM network’. Int. Power Engineering Conf., Singapore, December 2007, pp. 465469.
    33. 33)
      • 33. Yao Hua De Chang (Beijing) Electronic Co. Ltd: ‘TA1309 data sheet’, Beijing, China.
    34. 34)
      • 36. Zamboni, L., Lambert-Torres, G., Gama, P.H.R., et al: ‘Peak-load period refrigerator control for end-consumer load management’. IEEE PES Conf. Innovative Smart Grid Technologies, Washington, DC, USA, February 2013, pp. 16.
    35. 35)
      • 29. International Energy Agency: ‘World energy outlook 2015– electricity access database’ (International Telecommunication Union, 2015).
    36. 36)
      • 19. Palensky, P., Dietrich, D.: ‘Demand side management: demand response, intelligent energy systems, and smart loads’, IEEE Trans. Ind. Electron., 2011, 9, (3), pp. 381388.
    37. 37)
      • 4. Berthier, R., Sanders, W.H.: ‘Specification-based intrusion detection for advanced metering infrastructures’. IEEE Pacific Rim Int. Symp. on Dependable Computing, California, USA, December 2011, pp. 184193.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1852
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1852
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading