access icon free DT-based relaying scheme for fault classification in transmission lines using MODP

In this study, a novel intelligent relaying scheme is proposed for fault classification and faulted phase selection using magnitude of differential power (MODP). The DP is the multiplication of difference between the magnitude of the real and estimated voltage and current phasors. The MODP for each phase is used as an input data to the data mining model known as decision tree (DT). The DT is used to generate thresholds to detect and classify the faults, since determination of robust thresholds is an important challenge in protective relay engineering. The proposed method has been tested for different operating modes of single-circuit transmission line in Simulink/MATLAB software. Simulation results indicate that the proposed method is able to detect and classify the faults with acceptable accuracy, in less than half cycle.

Inspec keywords: power engineering computing; power transmission lines; power transmission faults; decision trees; data mining; relay protection; fault diagnosis

Other keywords: data mining model; fault classification; fault detection; estimated voltage phasor; MODP; DT-based relaying scheme; intelligent relaying scheme; Simulink software; decision tree; faulted phase selection; single-circuit transmission line; MATLAB software; protective relay engineering; estimated current phasor; magnitude-of-differential power

Subjects: Power transmission lines and cables; Combinatorial mathematics; Power engineering computing; Power system protection; Knowledge engineering techniques; Combinatorial mathematics; Power transmission, distribution and supply; Data handling techniques

References

    1. 1)
      • 17. Specht, D.F.: ‘Probabilistic neural networks for classification, mapping, or associative memory’. IEEE Int. Conf. on Neural Networks, 1988, 1988, pp. 525532.
    2. 2)
      • 15. Dalstein, T., Kulicke, B.: ‘Neural network approach to fault classification for high speed protective relaying’, IEEE Trans. Power Deliv., 1995, 10, pp. 10021011.
    3. 3)
      • 11. Taalab, A.-M.I., Darwish, H.A., Ahmed, E.S.: ‘Performance of power differential relay with adaptive setting for line protection’, IEEE Trans. Power Deliv., 2007, 22, pp. 5058.
    4. 4)
      • 21. Shahid, N., Aleem, S., Naqvi, I.H., et al: ‘Support vector machine based fault detection & classification in smart grids’. 2012 IEEE Globecom Workshops, 2012, pp. 15261531.
    5. 5)
      • 20. Samantaray, S., Dash, P., Panda, G.: ‘Fault classification and location using HS-transform and radial basis function neural network’, Electr. Power Syst. Res., 2006, 76, pp. 897905.
    6. 6)
      • 18. Mo, F., Kinsner, W.: ‘Probabilistic neural networks for power line fault classification’. IEEE Canadian Conf. on Electrical and Computer Engineering, 1998, 1998, pp. 585588.
    7. 7)
      • 3. Ziegler, G.: ‘Numerical distance protection: principles and applications’ (John Wiley & Sons, 2011).
    8. 8)
      • 13. Bolandi, T.G., Seyedi, H., Hashemi, S.M.: ‘Protection of transmission lines using fault component integrated power’, IET Gener. Transm. Distrib., 2014, 8, pp. 21632172.
    9. 9)
      • 14. Bolandi, T.G., Seyedi, H., Hashemi, S.M., et al: ‘Impedance-differential protection: a new approach to transmission-line pilot protection’, IEEE Trans. Power Deliv., 2015, 30, pp. 25102518.
    10. 10)
      • 30. Jena, M.K., Samantaray, S.R.: ‘Data-mining-based intelligent differential relaying for transmission lines including UPFC and wind farms’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, pp. 817.
    11. 11)
      • 24. Chen, K., Huang, C., Jinliang, H.: ‘Fault detection, classification and location for transmission lines and distribution systems: a review on the methods’, High Voltage, 2016, 1, (1), pp. 2533.
    12. 12)
      • 2. Ding, F., Li, T.: ‘Notice of retraction research on the floating threshold of superimposed component distance relay based on sampled values’. 2011 IEEE Power Engineering and Automation Conf. (PEAM), 2011, pp. 189192.
    13. 13)
      • 27. Samantaray, S.: ‘Decision tree-based fault zone identification and fault classification in flexible AC transmissions-based transmission line’, IET Gener. Transm. Distrib., 2009, 3, pp. 425436.
    14. 14)
      • 4. Dambhare, S., Soman, S., Chandorkar, M.: ‘Adaptive current differential protection schemes for transmission-line protection’, IEEE Trans. Power Deliv., 2009, 24, pp. 18321841.
    15. 15)
      • 9. Hinge, T.P., Dambhare, S.S.: ‘Secure phase comparison schemes for transmission-line protection using synchrophasors’, IEEE Trans. Power Deliv., 2015, 30, pp. 20452054.
    16. 16)
      • 26. Jena, M.K., Tripathy, L., Samantray, S.: ‘Intelligent relaying of UPFC based transmission lines using decision tree’. 2013 1st Int. Conf. on Emerging Trends and Applications in Computer Science (ICETACS), 2013, pp. 224229.
    17. 17)
      • 22. Safavian, S.R., Landgrebe, D.: ‘A survey of decision tree classifier methodology’, 1990.
    18. 18)
      • 8. Dash, P.: ‘A new real-time fast discrete S-transform for cross-differential protection of shunt-compensated power systems’, IEEE Trans. Power Deliv., 2013, 28, pp. 402410.
    19. 19)
      • 25. Upendar, J., Gupta, C., Singh, G.: ‘Statistical decision-tree based fault classification scheme for protection of power transmission lines’, Int. J. Electr. Power Energy Syst., 2012, 36, pp. 112.
    20. 20)
      • 23. Rokach, L., Maimon, O.: ‘Top-down induction of decision trees classifiers – a survey’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2005, 35, pp. 476487.
    21. 21)
      • 5. Xu, Z., Du, Z., Ran, L., et al: ‘A current differential relay for a 1000 kV UHV transmission line’, IEEE Trans. Power Deliv., 2007, 22, pp. 13921399.
    22. 22)
      • 6. Dambhare, S., Soman, S., Chandorkar, M.: ‘Current differential protection of transmission line using the moving window averaging technique’, IEEE Trans. Power Deliv., 2010, 25, pp. 610620.
    23. 23)
      • 7. Perera, N., Rajapakse, A.D.: ‘Series-compensated double-circuit transmission-line protection using directions of current transients’, IEEE Trans. Power Deliv., 2013, 28, pp. 15661575.
    24. 24)
      • 1. Pathirana, V.: ‘A power system protection scheme combining impedance measurement and travelling waves: software and hardware implementation’ (The University of Manitoba, 2004).
    25. 25)
      • 16. Bo, Z., Aggarwal, R., Johns, A., et al: ‘A new approach to phase selection using fault generated high frequency noise and neural networks’, IEEE Trans. Power Deliv., 1997, 12, pp. 106115.
    26. 26)
      • 12. AsghariGovar, S., Seyedi, H.: ‘Adaptive CWT-based transmission line differential protection scheme considering cross-country faults and CT saturation’, IET Gener. Transm. Distrib., 2016, 10, pp. 20352041.
    27. 27)
      • 28. Saadat, H.: ‘Power system analysis’ (WCB/McGraw-Hill, 1999).
    28. 28)
      • 19. Dash, P., Samantaray, S., Panda, G.: ‘Fault classification and section identification of an advanced series-compensated transmission line using support vector machine’, IEEE Trans. Power Deliv., 2007, 22, pp. 6773.
    29. 29)
      • 29. Jamehbozorg, A., Shahrtash, S.M.: ‘A decision-tree-based method for fault classification in single-circuit transmission lines’, IEEE Trans. Power Deliv., 2010, 25, pp. 21902196.
    30. 30)
      • 31. Jena, M.K., Samantaray, S.: ‘Intelligent relaying scheme for series-compensated double circuit lines using phase angle of differential impedance’, Int. J. Electr. Power Energy Syst., 2015, 70, pp. 1726.
    31. 31)
      • 10. Darwish, H.A., Taalab, A.-M.I., Ahmed, E.S.: ‘Investigation of power differential concept for line protection’, IEEE Trans. Power Deliv., 2005, 20, pp. 617624.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1821
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1821
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading