access icon free Advanced power system partitioning method for fast and reliable restoration: toward a self-healing power grid

The recovery of power system after a large area blackout is a critical task. To speed up the recovery process in a power grid with multiple black-start units, it would be beneficial to partition the system into several islands and initiate the parallel self-healing process independently. This study presents an effective network partitioning algorithm based on the mixed-integer programming technique and considering the restoration process within each island. The proposed approach incorporates several criteria such as self-healing time, network observability, load pickup capability, and voltage stability limits. It can quickly provide multiple partitioning schemes for system operators to choose based on different requirements. Experimental results are provided to demonstrate the effectiveness of the proposed approach for IEEE 39-bus and IEEE 118-bus standard test systems. Also, the sensitivity of the partitioning solution with respect to the various parameters is presented and discussed. Ultimately, the advantage of the proposed method is demonstrated through the comparison with other references.

Inspec keywords: power system reliability; power grids; integer programming

Other keywords: restoration process; IEEE 118-bus standard test system; multiple partitioning schemes; voltage stability limits; mixed-integer programming technique; network observability; advanced power system partitioning method; parallel self-healing process; power system recovery; effective network partitioning algorithm; load pickup capability; self-healing power grid; IEEE 39-bus standard test system; multiple black-start units; self-healing time

Subjects: Power systems; Reliability; Optimisation techniques

References

    1. 1)
      • 1. Wang, Y., Chen, C., Wang, J., et al: ‘Research on resilience of power systems under natural disasters – a review’, IEEE Trans. Power Syst., 2016, 31, (2), pp. 16041612.
    2. 2)
      • 27. Chavez, H., Baldick, R., Sharma, S.: ‘Governor rate-constrained OPF for primary frequency control adequacy’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 14731480.
    3. 3)
      • 26. Ceja-Gomez, F., Qadri, S., Galiana, F.D.: ‘Under-frequency load shedding via integer programming’, IEEE Trans. Power Syst., 2012, 27, (3), pp. 13871394.
    4. 4)
      • 7. Sun, L., Zhang, C., Lin, Z., et al: ‘Network partitioning strategy for parallel power system restoration’, IET Gener. Transm. Distrib., 2016, 10, (8), pp. 18831892.
    5. 5)
      • 28. Moghavemmi, M., Omar, F.M.: ‘Technique for contingency monitoring and voltage collapse prediction’, IEEE Proc. Gener. Transm. Distrib., 1998, 145, pp. 634640.
    6. 6)
      • 6. Quiros-Tortos, J., Terzija, V.: ‘A graph theory based new approach for power system restoration’. Proc. IEEE PowerTech, 2013, pp. 16.
    7. 7)
      • 22. Golshani, A., Sun, W., Zhou, Q.: ‘Optimal PMU placement for power system restoration’. Proc. Power Systems Conf. (PSC), 2015.
    8. 8)
      • 16. ‘PJM Manuals – M-36: System Restoration’, 2017. Available at http://www.pjm.com/~/media/documents/manuals/m36.ashx, accessed August 2017.
    9. 9)
      • 18. Baldwin, T.L., Mili, L., Boisen, M.B., et al: ‘Power system observability with minimal phasor measurement placement’, IEEE Trans. Power Syst., 1993, 8, (2), pp. 707715.
    10. 10)
      • 5. Pan, Z., Zhang, Y.: ‘A flexible black-start network partitioning strategy considering subsystem recovery time balance’, Int. Trans. Electr. Energy Syst., 2015, 25, pp. 16441656.
    11. 11)
      • 23. Huang, L., Sun, Y., Xu, J., et al: ‘Optimal PMU placement considering controlled islanding of power system’, IEEE Trans. Power Syst., 2014, 29, (2), pp. 742755.
    12. 12)
      • 8. Quiros-Tortos, J., Panteli, M., Wall, P., et al: ‘Sectionalising methodology for parallel system restoration based on graph theory’, IET Gener. Transm. Distrib., 2015, 9, (11), pp. 12161225.
    13. 13)
      • 24. Sun, W., Liu, C.C., Zhang, L.: ‘Optimal generator start-up strategy for bulk power system restoration’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 13571366.
    14. 14)
      • 14. Fink, L.H., Liou, K.L., Liu, C.C.: ‘From generic restoration actions to specific restoration strategies’, IEEE Trans. Power Syst., 1995, 10, (2), pp. 745752.
    15. 15)
      • 29. Musirin, I., Rahman, T.K.A.: ‘Novel fast voltage stability index (FVSI) for voltage stability analysis in power transmission system’. Proc. IEEE Student Conf. Research and Development, 2002, pp. 265268.
    16. 16)
      • 11. Nezam Sarmadi, S.A., Dobakhshari, A.S., Azizi, S., et al: ‘A sectionalizing method in power system restoration based on WAMS’, IEEE Trans. Smart Grid, 2011, 2, (1), pp. 178185.
    17. 17)
      • 19. Muller, H.H., Castro, C.A.: ‘Genetic algorithm-based phasor measurement unit placement method considering observability and security criteria’, IET Gener. Transm. Distrib., 2016, 10, (1), pp. 270280.
    18. 18)
      • 17. Gou, B.: ‘Generalized integer linear programming formulation for optimal PMU placement’, IEEE Trans. Power Syst., 2008, 23, (3), pp. 10991104.
    19. 19)
      • 2. Stefanov, A., Liu, C.C., Sforna, M., et al: ‘Decision support for restoration of interconnected power systems using tie lines’, IET Gener. Transm. Distrib., 2015, 9, (11), pp. 10061018.
    20. 20)
      • 12. Wang, C., Vittal, V., Sun, K.: ‘OBDD-based sectionalizing strategies for parallel power system restoration’, IEEE Trans. Power Syst., 2011, 26, (3), pp. 14261433.
    21. 21)
      • 10. Liu, W., Lin, Z., Wenb, F., et al: ‘Sectionalizing strategies for minimizing outage durations of critical loads in parallel power system restoration with bi-level programming’, Electr. Power Syst. Res., 2015, 71, pp. 327334.
    22. 22)
      • 20. Aminifar, F., Khodaei, A., Fotuhi-Firuzabad, M., et al: ‘Contingency-constrained PMU placement in power networks’, IEEE Trans. Power Syst., 2010, 25, (1), pp. 516523.
    23. 23)
      • 15. Chou, Y.T., Liu, C.W., Wang, Y.J., et al: ‘Development of a black start decision supporting system for isolated power systems’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 22022210.
    24. 24)
      • 3. Li, Y., Zou, Y., Jia, Y., et al: ‘A new algorithm for black-start zone partitioning based on fuzzy clustering analysis’, J. Energy Power Eng., 2013, 5, pp. 763768.
    25. 25)
      • 25. Trodden, P.A., Bukhsh, W.A., Grothey, A., et al: ‘Optimization-based islanding of power networks using piecewise linear AC power flow’, IEEE Trans. Power Syst., 2014, 29, (3), pp. 12121220.
    26. 26)
      • 9. Quirós-Tortós, J., Wall, P., Ding, L., et al: ‘Determination of sectionalising strategies for parallel power system restoration: a spectral clustering-based methodology’, Electr. Power Syst. Res., 2014, 116, pp. 381390.
    27. 27)
      • 30. ‘Illinois Center for a Smarter Electric Grid’. Available at http://icseg.iti.illinois.edu.
    28. 28)
      • 4. Wu, Y., Fang, X.Y., Zhang, Y., et al: ‘Tabu search algorithm based black-start zone partitioning’, Power Syst. Prot. Control, 2010, 38, (10), pp. 611.
    29. 29)
      • 13. Adibi, M.M.: ‘Power system restoration: methodologies & implementation strategies’ (Wiley-IEEE Press, 2000, 1st edn.).
    30. 30)
      • 21. Korkali, M., Abur, A.: ‘Reliable measurement design against loss of PMUs with variable number of channels’. Proc. 41 North American Power Symp., 2009.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1797
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1797
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading