access icon free Impact of reverse power flow on the optimal distributed generation placement problem

Integration of distributed generation (DG) in existing distribution networks has been studied thoroughly during the past years as a measure of reducing grid's power losses. However, the optimal DG placement, known as ODGP, toward loss minimisation, has not been studied in depth by considering the possible impact of the reverse power flow (RPF) caused by extended penetration of distributed energy resources. This study uses a constriction factor embedded local particle swarm optimisation algorithm along with the appropriate particle formulation that solves the ODGP problem by taking into account the impact of possible RPF. In this study, the idea of RPF modelling is introduced by providing extended versions of IEEE test systems. Modified versions of the IEEE 30-bus and IEEE 33-bus test systems are modelled and results are presented in order to highlight the impact of RPF on the ODGP problem solution. The mathematical formulation is given, results and analysis for both extended systems are presented, while the importance of RPF for different conditions is assessed.

Inspec keywords: load flow; particle swarm optimisation; distributed power generation

Other keywords: ODGP; reverse power flow; IEEE 30-bus test systems; optimal DG placement; distributed energy resources; particle swarm optimisation algorithm; RPF; optimal distributed generation placement problem; IEEE 33-bus test systems; loss minimisation

Subjects: Optimisation techniques; Distributed power generation

References

    1. 1)
      • 10. Esmaili, M., Firozjaee, E.C., Shayanfar, H.A.: ‘Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints’, Appl. Energy, 2014, 113, pp. 12521260.
    2. 2)
      • 33. Wang, C., Nehrir, M.H.: ‘Analytical approaches for optimal placement of distributed generation sources in power systems’, IEEE Trans. Power Syst., 2004, 19, (4), pp. 20682076.
    3. 3)
      • 45. Gkaidatzis, P.A., Doukas, D.I., Bouhouras, A.S., et al: ‘Impact of penetration schemes to optimal DG placement for loss minimisation’, Int. J. Sustain. Energy, 2015, pp. 116.
    4. 4)
      • 22. Georgilakis, P.S., Hatziargyriou, N.D.: ‘Optimal distributed generation placement in power distribution networks: models, methods, and future research’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 34203428.
    5. 5)
      • 1. Peças Lopes, J.A., Hatziargyriou, N., Mutale, J., et al: ‘Integrating distributed generation into electric power systems: a review of drivers, challenges and opportunities’, Electr. Power Syst. Res., 2007, 77, (9), pp. 11891203.
    6. 6)
      • 17. Gómez, M., López, A., Jurado, F.: ‘Optimal placement and sizing from standpoint of the investor of photovoltaics grid-connected systems using binary particle swarm optimization’, Appl. Energy, 2010, 87, (6), pp. 19111918.
    7. 7)
      • 7. Hung, D.Q., Mithulananthan, N.: ‘Multiple distributed generator placement in primary distribution networks for loss reduction’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 17001708.
    8. 8)
      • 36. Yokoyama, R., Bae, S.H., Morita, T., et al: ‘Multiobjective optimal generation dispatch based on probability security criteria’, IEEE Trans. Power Syst., 1988, 3, (1), pp. 317324.
    9. 9)
      • 11. Antunes, C.H., Pires, D.F., Barrico, C., et al: ‘A multi-objective evolutionary algorithm for reactive power compensation in distribution networks’, Appl. Energy, 2009, 86, (7–8), pp. 977984.
    10. 10)
      • 13. El-Ela, A.A.A., Allam, S.M., Shatla, M.M.: ‘Maximal optimal benefits of distributed generation using genetic algorithms’, Electr. Power Syst. Res., 2010, 80, (7), pp. 869877.
    11. 11)
      • 5. Hung, D.Q., Mithulananthan, N., Bansal, R.C.: ‘Analytical expressions for DG allocation in primary distribution networks’, IEEE Trans. Energy Convers., 2010, 25, (3), pp. 814820.
    12. 12)
      • 15. Abu-Mouti, F.S., El-Hawary, M.E.: ‘Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm’, IEEE Trans. Power Deliv., 2011, 26, (4), pp. 20902101.
    13. 13)
      • 27. Doukas, D.I., Gkaidatzis, P.A., Bouhouras, A.S., et al: ‘On reverse power flow modelling in distribution grids’. Tenth Power Generation, Transmission, Distribution and Energy Conversion, Belgrade, Serbia, November 2016, pp. 16.
    14. 14)
      • 35. Singh, R.K., Goswami, S.K.: ‘Optimum siting and sizing of distributed generations in radial and networked systems’, Electr. Power Compon. Syst., 2009, 37, (2), pp. 127145.
    15. 15)
      • 2. Georgilakis, P.S., Hatziargyriou, N.D.: ‘A review of power distribution planning in the modern power systems era: models, methods and future research’, Electr. Power Syst. Res., 2015, 121, pp. 89100.
    16. 16)
      • 20. Kanwar, N., Gupta, N., Niazi, K.R., et al: ‘Simultaneous allocation of distributed resources using improved teaching learning based optimization’, Energy Convers. Manage., 2015, 103, pp. 387400.
    17. 17)
      • 38. Engelbrecht, A.P.: ‘Computational intelligence: an introduction 2nd edition’ (John Wiley & Sons, Ltd., Chichester, West Sussex, PO19 8SQ, UK, 2007), pp. 378.
    18. 18)
      • 42. Hu, X., Shi, Y., Eberhart, R.: ‘Recent advances in particle swarm’. Proc. Congress Evolutionary Computation, Portland, OR, USA, June 2004, pp. 9097.
    19. 19)
      • 39. Eberhart, R., Kennedy, J.: ‘A new optimizer using particle swarm theory’. Proc. Int. Symp. Micro Machine and Human Science, Nagoya, Japan, October 1995, pp. 3943.
    20. 20)
      • 24. Abdmouleh, Z., Gastli, A., Ben-Brahim, L., et al: ‘Review of optimization techniques applied for the integration of distributed generation from renewable energy sources’, Renew. Energy, 2017, 113, pp. 266280.
    21. 21)
      • 43. Mendes, R., Kennedy, J., Neves, J.: ‘Watch thy neighbor or how the swarm can learn from its environment’. Proc. IEEE Swarm Intelligence Symp., Indianapolis, IN, USA, April 2003, pp. 8894.
    22. 22)
      • 31. Masters, C.L.: ‘Voltage rise: the big issue when connecting embedded generation to long 11 kV overhead lines’, Power Eng. J., 2002, 16, (1), pp. 512.
    23. 23)
      • 37. Kashem, M., Ganapathy, V., Jasmon, G., et al: ‘A novel method for loss minimization in distribution networks’. Proc. Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies, London, UK, April 2000, pp. 251256.
    24. 24)
      • 8. Viral, R., Khatod, D.K.: ‘An analytical approach for sizing and siting of DGs in balanced radial distribution networks for loss minimization’, Int. J. Electr. Power Energy Syst., 2015, 67, pp. 191201.
    25. 25)
      • 41. Eberhart, R., Shi, Y.: ‘Comparing nonlinear inertia weights and constriction factors in particle swarm optimization’. Proc. Congress on Evolutionary Computation, La Jolla, CA, USA, May 2000, pp. 8488.
    26. 26)
      • 9. Gözel, T., Hocaoglu, M.H.: ‘An analytical method for the sizing and siting of distributed generators in radial systems’, Electr. Power Syst. Res., 2009, 79, (6), pp. 912918.
    27. 27)
      • 18. Gitizadeh, M., Vahed, A.A., Aghaei, J.: ‘Multistage distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms’, Appl. Energy, 2013, 101, pp. 655666.
    28. 28)
      • 12. Ghosh, S., Ghoshal, S.P., Ghosh, S.: ‘Optimal sizing and placement of distributed generation in a network system’, Int. J. Electr. Power Energy Syst., 2010, 32, (8), pp. 849856.
    29. 29)
      • 28. Gkaidatzis, P.A., Doukas, D.I., Labridis, D.P., et al: ‘Comparative analysis of heuristic techniques applied to ODGP’. Proc. Int. Conf. IEEE Environment and Electrical Engineering and Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, June 2017, pp. 16.
    30. 30)
      • 30. Ackermann, T., Knyazkin, V.: ‘Interaction between distributed generation and the distribution network: operation aspects’. Proc. IEEE/PES Transmission and Distribution Conf. Exhibition, Yokohama, Japan, October 2002, pp. 13571362.
    31. 31)
      • 25. Jamian, J.J., Mustafa, M.W., Mokhlis, H., et al: ‘Comparative study on distributed generator sizing using three types of particle swarm optimization’. Proc. Int. Conf. Intelligent Systems Modelling and Simulation, Kota Kinabalu, Malaysia, February 2012, pp. 131136.
    32. 32)
      • 29. Bouhouras, A.S., Sgouras, K.I., Gkaidatzis, P.A., et al: ‘Optimal active and reactive nodal power requirements towards loss minimization under reverse power flow constraint defining DG type’, Int. J. Electr. Power Energy Syst., 2016, 78, pp. 445454.
    33. 33)
      • 44. Clerc, M., Kennedy, J.: ‘The particle swarm – explosion, stability, and convergence in a multidimensional complex space’, IEEE Trans. Evol. Comput., 2002, 6, (1), pp. 5873.
    34. 34)
      • 23. del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., et al: ‘Particle swarm optimization: basic concepts, variants and applications in power systems’, IEEE Trans. Evol. Comput., 2008, 12, (2), pp. 171195.
    35. 35)
      • 34. Akorede, M.F., Hizam, H., Aris, I., et al: ‘Effective method for optimal allocation of distributed generation units in meshed electric power systems’, IET Gener. Transm. Distrib., 2011, 5, (2), pp. 276287.
    36. 36)
      • 26. Parsopoulos, K.E., Vrahatis, M.N.: ‘Particle swarm optimization and intelligence: advances and applications’ (IGI Global, Hershey, PA, 2010).
    37. 37)
      • 32. Leeton, U., Uthitsunthorn, D., Kwannetr, U., et al: ‘Power loss minimization using optimal power flow based on particle swarm optimization’. Proc. Int. Conf. Electrical Engineering/Electronics Computer Telecommunications and Information Technology, Chiang Mai, Thailand, May 2010, pp. 440444.
    38. 38)
      • 19. Fu, X., Chen, H., Cai, R., et al: ‘Optimal allocation and adaptive VAR control of PV-DG in distribution networks’, Appl. Energy, 2015, 137, pp. 173182.
    39. 39)
      • 16. Niknam, T., Taheri, S.I., Aghaei, J., et al: ‘A modified honey bee mating optimization algorithm for multiobjective placement of renewable energy resources’, Appl. Energy, 2011, 88, (12), pp. 48174830.
    40. 40)
      • 4. Jordehi, A.R.: ‘Optimisation of electric distribution systems: a review’, Renew. Sustain. Energy Rev., 2015, 51, pp. 10881100.
    41. 41)
      • 14. Kim, K.-H., Lee, Y.-J., Rhee, S.-B., et al: ‘Dispersed generator placement using fuzzy-GA in distribution systems’. Proc. IEEE PES Summer Meeting, Chicago, IL, USA, July 2002, pp. 11481153.
    42. 42)
      • 3. Jordehi, A.R.: ‘Allocation of distributed generation units in electric power systems: a review’, Renew. Sustain. Energy Rev., 2016, 56, pp. 893905.
    43. 43)
      • 6. Hung, D.Q., Mithulananthan, N.: ‘Loss reduction and loadability enhancement with DG: a dual-index analytical approach’, Appl. Energy, 2014, 115, pp. 233241.
    44. 44)
      • 40. Shi, Y., Eberhart, R.: ‘A modified particle swarm optimizer’. Proc. Int. Conf. Evolutionary Computation, Anchorage, AK, USA, May 1998, pp. 6973.
    45. 45)
      • 21. Muttaqi, K.M., Le, A.D.T., Aghaei, J., et al: ‘Optimizing distributed generation parameters through economic feasibility assessment’, Appl. Energy, 2016, 165, pp. 893903.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1791
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1791
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading