access icon free Modelling of non-uniform lines using rational approximation and mode revealing transformation

The authors present a methodology to improve the rational modelling of non-uniform lines (NuLs). First, they formulate a segmented chain matrix representation of the NuL, which is converted into a nodal admittance formulation with respect to the two line ends. The admittance matrix is fitted with rational functions while utilising the so-called chain matrix in combination with a mode revealing transformation matrix, to improve the identification of poorly observable modes and poles. The procedure is demonstrated for a case of a very wide river crossing where the transmission towers are over 300 m high. The results compare favourably with the ones obtained using a numerical Laplace transform.

Inspec keywords: electric admittance; approximation theory; Laplace transforms; power overhead lines; poles and towers; transmission line matrix methods

Other keywords: nonuniform line modelling; nodal admittance formulation; rational modelling improvement; rational approximation; pole identification improvement; transmission towers; poorly observable mode identification; rational functions; NuL modelling; admittance matrix; segmented chain matrix representation; mode revealing transformation matrix; numerical Laplace transform

Subjects: Interpolation and function approximation (numerical analysis); Network and transmission line calculations; Power line supports, insulators and connectors; Linear algebra (numerical analysis); Integral transforms in numerical analysis; Overhead power lines

References

    1. 1)
      • 19. Deschrijver, D., Mrozowski, M., Dhaene, T., et al: ‘Macromodeling of multiport systems using a fast implementation of the vector fitting method’, IEEE Microw. Wirel. Compon. Lett., 2008, 18, (6), pp. 383385.
    2. 2)
      • 28. Wilcox, D.J.: ‘Numerical Laplace transformation and inversion’, Int. J. Electr. Eng. Educ., 1978, 15, pp. 247265.
    3. 3)
      • 24. Gustavsen, B., Heitz, C.: ‘Fast realization of the modal vector fitting method for rational modeling with accurate representation of small eigenvalues’, IEEE Trans. Power Deliv., 2009, 24, (3), pp. 13961405.
    4. 4)
      • 20. Gustavsen, B.: ‘Fast passivity enforcement for pole-residue models by perturbation of residue matrix eigenvalues’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 22782285.
    5. 5)
      • 9. Semlyen, A.: ‘Some frequency domain aspects of wave propagation on nonuniform lines’, IEEE Trans. Power Deliv., 2003, 18, (1), pp. 315322.
    6. 6)
      • 15. Nguyen, H., Dommel, H., Marti, J.: ‘Modeling of single-phase nonuniform transmission lines in electromagnetic transient simulations’, IEEE Trans. Power Deliv., 1997, 12, pp. 916921.
    7. 7)
      • 18. Gustavsen, B.: ‘Improving the pole relocation properties of vector fitting’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 15871592.
    8. 8)
      • 25. Deri, A., Tevan, G., Semlyen, A., et al: ‘The complex ground return plane – a simplified model for homogeneous and multi-layer earth return’, IEEE Trans. Power Appar. Syst., 1981, PAS-100, (8), pp. 36863693.
    9. 9)
      • 6. Pinto, A.J.G., Costa, E.C.M., Kurokawa, S., et al: ‘Analysis of the electrical characteristics of an alternative solution for the Brazilian–Amazon Transmission system’, Electr. Power Compon. Syst., 2011, 39, pp. 14241436.
    10. 10)
      • 13. Al Fuhaid, A., Oufi, E., Saied, M.: ‘Application of nonuniform line theory to the simulation of electromagnetic transients in power systems’, Int. J. Electr. Power Energy Syst., 1998, 20, (3), pp. 225233.
    11. 11)
      • 22. Gomez, P., Moreno, P., Naredo, J.: ‘Frequency domain transient analysis of nonuniform lines with incident field excitation’, IEEE Trans. Power Deliv., 2005, 20, (3), pp. 22732280.
    12. 12)
      • 26. Lima, A.C.S.: ‘Rational modeling of nonhomogeneous systems’, J. Control Autom. Electr. Syst., 2014, 26, (2), pp. 180189.
    13. 13)
      • 11. Araujo, A.R.J., Kurokawa, S., Shinoda, A.A., et al: ‘Mitigation of erroneous oscillations in electromagnetic transient simulations using analogue filter theory’, IET Sci. Meas. Technol., 2017, 11, pp. 4148, doi: 10.1049/iet-smt.2016.0166.
    14. 14)
      • 31. Semlyen, A., Dabuleanu, A.: ‘Fast and accurate switching transient calculations on transmission lines with ground return using recursive convolutions’, IEEE Trans. Power Appar. Syst., 1975, PAS-94, pp. 561571.
    15. 15)
      • 16. Gustavsen, B.: ‘Rational modeling of multiport systems via a symmetry and passivity preserving mode-revealing transformation’, IEEE Trans. Power Deliv., 2014, 29, (1), pp. 199206.
    16. 16)
      • 1. Semlyen, A., Dabuleanu, A.: ‘Fast and accurate switching transient calculations on transmission lines with ground return using recursive convolutions’, IEEE Trans. Power Appar. Syst., 1975, PAS-94, (2), pp. 561575.
    17. 17)
      • 14. Gutierrez, J.R., Moreno, P., Naredo, J., et al: ‘Nonuniform transmission tower model for lightning 
transient studies’, IEEE Trans. Power Deliv., 2004, 19, (2), pp. 490496.
    18. 18)
      • 10. Ramirez, A., Semlyen, A., Iravani, R.: ‘Modeling nonuniform transmission lines for time domain simulation of electromagnetic transients’, IEEE Trans. Power Deliv., 2003, 18, (3), pp. 968974.
    19. 19)
      • 30. Moreno, P., Ramirez, A.: ‘Implementation of the numerical Laplace transform: a review task force on frequency domain methods for EMT studies’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 25992609.
    20. 20)
      • 7. Schelkunoff, S.: ‘Electromagnetic waves’ (D. Van Nostrand Co., New York, 1943).
    21. 21)
      • 32. Gustavsen, B.: ‘Computer code for rational approximation of frequency dependent admittance matrices’, IEEE Trans. Power Deliv., 2002, 17, (4), pp. 10931098.
    22. 22)
      • 21. Gustavsen, B.: ‘Validation of frequency-dependent transmission line models’, IEEE Trans. Power Deliv., 2005, 20, (2), pp. 925933.
    23. 23)
      • 4. Morched, A., Gustavsen, B., Tartibi, M.: ‘A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables’, IEEE Trans. Power Deliv., 2014, 14, (3), pp. 10321038.
    24. 24)
      • 8. Wedepohl, L., Indulkar, C.: ‘Wave propagation in nonhomogeneous systems. Properties of the chain matrix’, Proc. IEE, 1974, 121, (9), p. 997.
    25. 25)
      • 12. Oufi, E., AlFuhaid, A., Saied, M.: ‘Transient analysis of lossless single-phase nonuniform transmission lines’, IEEE Trans. Power Deliv., 1994, 9, pp. 16941700.
    26. 26)
      • 5. Pinto, A.J.G., Costa, E.C.M., Kurokawa, S., et al: ‘Analysis of the electrical characteristics and surge protection of EHV transmission lines supported by tall towers’, Int. J. Electr. Power Energy Syst., 2014, 57, pp. 358365.
    27. 27)
      • 23. Gustavsen, B., Heitz, C.: ‘Modal vector fitting: a tool for generating rational models of high accuracy with arbitrary terminal conditions’, IEEE Trans. Adv. Packag., 2008, 31, (4), pp. 664672.
    28. 28)
      • 27. ‘The Vector Fitting Website’. Available at https://www.sintef.no/projectweb/vectfit/, accessed 2 February 2017.
    29. 29)
      • 29. Wedepohl, L.M.: ‘Power system transients: errors incurred in the numerical inversion of the Laplace transform’. Proc. 26th Midwest Symp. Circuits Syst., August 1983, pp. 174178.
    30. 30)
      • 3. Noda, T., Nagaoka, N., Ametani, A.: ‘Phase domain modeling of frequency-dependent transmission lines by means of an ARMA model’, IEEE Trans. Power Deliv., 1996, 11, (1), pp. 401411.
    31. 31)
      • 17. Gustavsen, B., Semlyen, A.: ‘Rational approximation of frequency domain responses by vector fitting’, IEEE Trans. Power Deliv., 1999, 14, (3), pp. 10521061.
    32. 32)
      • 2. Martí, J.R.: ‘Accurate modelling of frequency-dependent transmission lines in electromagnetic transient simulations’, IEEE Trans. Power Appar. Syst., 1982, PAS-101, (1), pp. 147157.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1676
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1676
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading