access icon free High-performance control system for grid-tied ESSs

In this study, a high-performance controller is proposed for single-phase grid-tied energy storage systems (ESSs). To control power factor and current harmonics and manage time-shifting of energy, the ESS is required to have low steady-state error and fast transient response. It is well known that fast controllers often lack the required steady-state accuracy and trade-off is inevitable. A hybrid control system is therefore presented that combines a simple yet fast proportional derivative controller with a repetitive controller which is a type of learning controller with small steady-state error, suitable for applications with periodic grid current harmonic waveforms. This results in an improved system with distortion-free, high power factor grid current. The proposed controller model is developed and design parameters are presented. The stability analysis for the proposed system is provided and the theoretical analysis is verified through stability, transient and steady-state simulations.

Inspec keywords: power factor; transient response; power system harmonics; power system stability; PD control; power control; energy storage

Other keywords: repetitive controller; high-power factor grid current; current harmonics; high-performance control system; steady-state accuracy; transient simulation; steady-state error; power factor control; theoretical analysis; stability analysis; single-phase grid-tied ESS; fast transient response; hybrid control system; periodic grid current harmonic waveforms; energy time-shifting; high-performance controller; learning controller; steady-state simulation; proportional derivative controller; single-phase grid-tied energy storage systems; design parameter

Subjects: Power system control; Stability in control theory; Power supply quality and harmonics; Control of electric power systems; Power and energy control

References

    1. 1)
      • 25. Liu, T., Wang, D.: ‘Parallel structure fractional repetitive control for PWM inverters’, IEEE Trans. Ind. Electron., 2015, PP, (99), p. 1.
    2. 2)
      • 5. Haaren, R., Morjaria, M., Fthenakis, V.: ‘An energy storage algorithm for ramp rate control of utility scale PV (photovoltaics) plants’, Energy, 2015, 91, pp. 894902.
    3. 3)
      • 21. Sunny Island 5048U Product Training Report, SMA Solar Technology, 2012.
    4. 4)
      • 22. Lu, W., Zhou, K., Wang, D., et al: ‘A general parallel structure repetitive control scheme for multiphase DC–AC PWM converters’, IEEE Trans. Power Electron., 2013, 28, (8), pp. 39803987.
    5. 5)
      • 10. Liu, Z., Liu, J., Zhao, Y.: ‘A unified control strategy for three-phase inverter in distributed generation’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 11761191.
    6. 6)
      • 31. He, J., Li, Y.W., Blaabjerg, F., et al: ‘Active harmonic filtering using current-controlled, grid-connected DG units with closed-loop power control’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 642653.
    7. 7)
      • 18. Niroomand, M., Karshenas, H.R.: ‘Hybrid learning control strategy for three-phase uninterruptible power supply’, IET Power Electron., 2011.
    8. 8)
      • 12. Niroomand, M., Karshenas, H.R.: ‘Review and comparison of control methods for uninterruptible power supplies’. Power Electronic & Drive Systems & Technologies Conf. (PEDSTC), 2010, pp. P1823.
    9. 9)
      • 30. Ebadi, M., Joorabian, M., Moghani, J.S.: ‘Voltage look-up table method to control multilevel cascaded transformerless inverters with unequal DC rail voltages’, IET Power Electron., 2014, 7, (9), pp. 23002309.
    10. 10)
      • 1. Krishnan, V., Das, T.: ‘Optimal allocation of energy storage in a co-optimized electricity market: benefits assessment and deriving indicators for economic storage ventures’, Energy, 2015, 81, pp. 175188.
    11. 11)
      • 3. Energy Storage Technology Roadmap, International Energy Agency (IEA), 2014.
    12. 12)
      • 6. The future role and challenges of energy storage, EUROPEAN COMMISSION, DIRECTORATE-GENERAL FOR ENERGY, 2013.
    13. 13)
      • 24. de Almeida, P.M., Duarte, J.L., Ribeiro, P.F., et al: ‘Repetitive controller for improving grid-connected photovoltaic systems’, IET Power Electron., 2014, 7, (6), pp. 14661474.
    14. 14)
      • 14. Niroomand, M., Karshenas, H.R.: ‘Performance specifications of series–parallel UPS's with different control strategies, international review of electrical engineering, 2009, 4, (7), pp. 799807.
    15. 15)
      • 4. Zobaa, A.F.: ‘Optimal multi objective design of hybrid active power filters considering a distorted environment’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 107114.
    16. 16)
      • 13. Castilla, M., Miret, J., Camacho, A., et al: ‘Reduction of current harmonic distortion in three-phase grid-connected photovoltaic inverters via resonant current control’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 14641472.
    17. 17)
      • 17. Gomez Jorge, S., Busada, C.A., Solsona, J.A.: ‘Frequency-adaptive current controller for three-phase grid-connected converters’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 41694177.
    18. 18)
      • 27. Lee, K.-J., Park, B.-G., Kim, R.-Y., et al: ‘Robust predictive current controller based on a disturbance estimator in a three-phase grid-connected inverter’, IEEE Trans. Power Electron., 2012, 27, (1), pp. 276283.
    19. 19)
      • 32. Li, Y., Jiang, S., Cintron-Rivera, J.G., et al: ‘Modeling and control of quasi-Z-source inverter for distributed generation applications’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 15321541.
    20. 20)
      • 15. Mahmud, M.A., Hossain, M.J., Pota, H.R., et al: ‘Robust nonlinear controller design for three-phase grid-connected photovoltaic systems under structured uncertainties’, IEEE Trans. Power Deliv., 2014, 29, (3), pp. 12211230.
    21. 21)
      • 2. Silvente, J., Aguirre, A.M., Zamarripa, M.A., et al: ‘Improved time representation model for the simultaneous energy supply and demand management in microgrids’, Energy, 2015, 87, pp. 615627.
    22. 22)
      • 29. Doh, T., Ryoo, J.: ‘Robust stability condition and analysis on steady-state tracking errors of repetitive control systems’, Int. J. Control Autom. Syst., 2008, 6, (6), pp. 960967.
    23. 23)
      • 16. Yao, Z., Xiao, L.: ‘Control of single-phase grid-connected inverters with nonlinear loads’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 13841389.
    24. 24)
      • 7. Sikkabut, S., Fuengwarodsakul, N.H., Sethakul, P., et al: ‘Control strategy of solar/wind energy power plant with super capacitor energy storage for smart DC microgrid’. 2013 IEEE Tenth Int. Conf. on Power Electronics and Drive Systems (PEDS), April 2013, pp. 12131218, 2225.
    25. 25)
      • 8. Niroomand, M., Won, D.J.: ‘Development of control structure for hybrid wind generators with active power capability’, Adv. Power Electron., 2014, 2014, pp. 19.
    26. 26)
      • 28. Lim, J.S., Park, C., Han, J., et al: ‘Robust tracking control of a three-phase DC–AC inverter for UPS applications’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 41424151.
    27. 27)
      • 9. Sun, X., Tian, Y., Chen, Z.: ‘Adaptive decoupled power control method for inverter connected DG’, IET Renew. Power Gener., 2014, 8, (2), pp. 171182.
    28. 28)
      • 33. Huerta, F., Pizarro, D., Cobreces, S., et al: ‘LQG servo controller for the current control of LCL grid-connected voltage-source converters’, IEEE Trans. Ind. Electron., 2012, 59, (11), pp. 42724284.
    29. 29)
      • 20. Hongtao, S., Peng, L., Chen, X., et al: ‘The research on novel repetitive control technology of inverter’. Electrical Machines and Systems, ICEMS 2008. Int. Conf. on, 17–20 October 2008, pp. 17581762.
    30. 30)
      • 11. Xu, J., Xie, S., Tang, T.: ‘Active damping-based control for grid-connected LCL-filtered inverter with injected grid current feedback only’, IEEE Trans. Ind. Electron., 2014, 61, (9), pp. 47464758.
    31. 31)
      • 19. Haibing, H., Qingbo, H., Zhengyu, L.: ‘A simple repetitive controller embedded in PI-based UPS for reducing total harmonic distortion with nonlinear loads’, PESC'06 37th IEEE, 2006, pp. 15, 1822.
    32. 32)
      • 23. Zhang, B., Zhou, K., Wang, D.: ‘Multirate repetitive control for PWM DC/AC converters’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 28832890.
    33. 33)
      • 26. Franklin, G.F., Powell, J.D., Emami-Naeini, A.: ‘Feedback control of dynamic systems’ (Addison-Wesley, 1991).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1637
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1637
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading