access icon free Two-layer volt/var/total harmonic distortion control in distribution network based on PVs output and load forecast errors

A two-layer control method is proposed for voltage and reactive power control in harmonic polluted distribution network with penetration of photovoltaic (PV) systems. Optimal scheduling of load tap changer and shunt capacitors for minimising energy losses and improving the power quality simultaneously are performed using P-particle swarm optimisation (PSO) optimisation method. Here, the minimising cost of real power losses and improving the power quality criteria have been pursued as the goals of an optimisation problem. Considering load and PVs output forecast, the first-layer control determines the optimal reactive power and control settings for all mechanical controllers. Hourly errors of load and power forecasts and mechanical control setting of the first layer are used to estimate optimised reactive power of PV in order to achieve maximum voltage regulation, reduce network losses and total harmonic distortion (THD). These data are trained a neural network (NN) to estimate optimised PV reactive power. This NN in the second layer is used to optimise the online reactive power setting based on online PV power. For more practical applications of the proposed method, simulation is carried out in a large distorted 37-bus distribution system. The algorithm will increase use of renewable energies, reduce voltage fluctuations, THD, and wear and tear of mechanical equipment.

Inspec keywords: neurocontrollers; power distribution control; harmonic distortion; power supply quality; photovoltaic power systems; reactive power control; particle swarm optimisation; power generation scheduling; voltage control; load forecasting

Other keywords: large distorted 37-bus distribution system; voltage power control; voltage fluctuation reduction; PSO method; shunt capacitors; mechanical controllers; two-layer volt-var-total harmonic distortion control; PV system penetration; P-particle swarm optimisation method; THD; voltage regulation; network loss reduction; load forecast errors; neural network; harmonic polluted distribution network; PVs output forecasting; reactive power control; mechanical equipment; energy loss minimization; power losses; power quality criteria; load tap changer optimal scheduling

Subjects: Power supply quality and harmonics; Solar power stations and photovoltaic power systems; Power and energy control; Neurocontrol; Power system control; Optimisation techniques; Power system planning and layout; Distribution networks; Optimisation techniques; Voltage control; Control of electric power systems

References

    1. 1)
      • 19. Eajal, A.A., El-Hawary, M.E.: ‘Optimal capacitor placement and sizing in unbalanced distribution systems with harmonics consideration using particle swarm optimization’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 17341741.
    2. 2)
      • 20. Esmin, A.A.A., Lambert-Torres, G., Zambroni de Souza, A.C.: ‘A hybrid particle swarm optimization applied to loss power minimization’, IEEE Trans. Power Syst., 2005, 20, (2), pp. 859866.
    3. 3)
      • 15. Borghetti, A., Bosetti, M., Grillo, S.: ‘Short-term scheduling and control of active distribution systems with high penetration of renewable resources’, IEEE Syst. J., 2010, 4, (3), pp. 313322.
    4. 4)
      • 25. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. Proc. IEEE Int. Conf. Neural Networks, Piscataway, NJ, 1995, pp. 19421948.
    5. 5)
      • 22. Ren, G., Wen, S., Yan, Z., et al: ‘Power load forecasting based on support vector machine and particle swarm optimization’, 12th World Congr. Intell. Control Autom., Guilin, China, June 2016, pp. 20032008.
    6. 6)
      • 27. Kersting, W.: ‘Radial distribution test feeders’, IEEE Trans. Power Syst., 1991, 6, (3), pp. 975985.
    7. 7)
      • 4. Hu, Z., Wang, X., Chen, H., et al: ‘Volt/var control in distribution systems using a time-interval based approach’, IET GTD, 2003, 150, (5), pp. 548554.
    8. 8)
      • 23. Calderaro, V., Conio, G., Galdi, V., et al: ‘Optimal decentralized voltage control for distribution systems with inverter-based distributed generators’, IEEE Trans. Power Syst., 2014, 29, pp. 230241.
    9. 9)
      • 13. Jahangiri, P., Aliprantis, D.C.: ‘Distributed volt/var control by PV inverters’, IEEE Trans. Power Syst., 2013, 28, (3), pp. 34293439.
    10. 10)
      • 1. Ahmed, H.: ‘Reactive power and voltage control in grid-connected wind farms: an online optimization based fast model predictive control approach’, Electr. Eng., 2015, 97, pp. 3544.
    11. 11)
      • 12. Yan, R., Saha, T.K.: ‘Investigation of voltage stability for residential customers due to high photovoltaic penetrations’, IEEE Trans. Power Syst., 2012, 27, pp. 651662.
    12. 12)
      • 26. Van den Bergh, F., Engelbrecht, A.P.: ‘A cooperative approach to particle swarm optimization’, IEEE Trans. Evol. Comput., 2004, 8, pp. 225239.
    13. 13)
      • 16. Ziadi, Z., Oshiro, M., Senjyu, T.: ‘Optimal voltage control using inverters interfaced with PV systems considering forecast error in a distribution system’, IEEE Trans. Sustain. Energy, 2014, 5, (2), pp. 682690.
    14. 14)
      • 6. Viawan, F.A., Karlsson, D.: ‘Voltage and reactive power control in systems with synchronous machine-based distributed generation’, IEEE Trans. Power Deliv., 2008, 23, pp. 10791087.
    15. 15)
      • 9. Deshmukh, S., Natarajan, B., Pahwa, A.: ‘Voltage/var control in distribution networks via reactive power injection through distributed generation’, IEEE Trans. Smart Grid, 2012, 3, (3), pp. 12261234.
    16. 16)
      • 24. Calderaro, V., Galdi, V., Piccolo, A., et al: ‘Optimal fuzzy controller for voltage control in distribution systems’. Int. Conf. on Intelligent Systems Design and Applications (ISDA), Cordoba, Spain, November 2011, pp. 12821287.
    17. 17)
      • 7. Pompodakis, E.E., Drougakis, I.A., Lelis, I.S., et al: ‘Photovoltaic systems in low-voltage networks and overvoltage correction with reactive power control’, IET GTD, 2015, 98, pp. 18.
    18. 18)
      • 5. Long, C., Ochoa, L.F.: ‘Voltage control of PV-rich LV networks: OLTC-fitted transformer and capacitor banks’, IEEE Trans. Power Syst., 2016, 31, (5), pp. 40164025.
    19. 19)
      • 21. Sayadi, F., Esmaeili, S., Keynia, F.: ‘Feeder reconfiguration and capacitor allocation in presence of non-linear loads using new P-PSO algorithm’, IET GTD, 2016, 10, pp. 225239.
    20. 20)
      • 18. Aleksi Paaso, E., Liao, Y., Cramer, A.M.: ‘Dual-layer voltage and VAR control approach with active participation from distributed solar generations’, Electr. Power Compon. Syst., 2015, 43, pp. 854865.
    21. 21)
      • 17. Zhang, L., Tang, W., Liang, J., et al: ‘Coordinated day-ahead reactive power dispatch in distribution network based on real power forecast errors’, IEEE Trans. Power Syst., 2015, 31, (3), pp. 19.
    22. 22)
      • 8. Yashodhan, P., Bikash, C., Rabih, A.: ‘Distribution voltage control considering the impact of PV generation on tap changers and autonomous regulators’, IEEE Trans. Power Syst., 2014, 29, (1), pp. 182192.
    23. 23)
      • 14. Robbins, B.A., Hadjicostis, C.N., Domı́nguez-Garcı́a, A.D.: ‘A two-stage distributed architecture for voltage control in power distribution systems’, IEEE Trans. Power Syst., 2013, 28, (2), pp. 14701482.
    24. 24)
      • 3. Lave, M., Kleissl, J., Arias-Castro, E.: ‘High frequency irradiance fluctuations and geographical smoothing’, Sol. Energy, 2012, 86, (8), pp. 21902199.
    25. 25)
      • 28. Ulinuha, A., Masoum, M., Islam, S.: ‘Hybrid genetic-fuzzy algorithm for volt/var/total harmonic distortion control of distribution systems with high penetration of non-linear loads’, IET GTD, 2011, 5, (4), pp. 425439.
    26. 26)
      • 2. Yeh, H.-G., Gayme, D.F., Low, S.H.: ‘Adaptive VAR control for distribution circuits with photovoltaic generators’, IEEE Trans. Power Syst., 2012, 27, pp. 16561663.
    27. 27)
      • 10. Paaso, E.A., Liao, Y., Cramer, A.: ‘Formulation and solution of distribution system voltage and VAR control with distributed generation as a mixed integer non-linear programming problem’, Electr. Power Syst. Res., 2014, 108, pp. 164169.
    28. 28)
      • 11. Jashfar, S., Esmaeili, S.: ‘Volt/var/THD control in distribution networks considering reactive power capability of solar energy conversion’, Electr. Power Energy Syst., 2014, 60, pp. 221233.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1440
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1440
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading