Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Combined control and power hardware in-the-loop simulation for testing smart grid control algorithms

Distribution networks are becoming increasingly ‘smarter’, as well as more complex, with the addition of power electronic devices, information and communication technologies, smart meters, and more. As a result, advanced control strategies to manage such networks are becoming necessary. These strategies need to be thoroughly tested and validated, before they can be implemented in a real network. For this reason, a smart grid control algorithm testing chain is proposed, that aims to gradually test control algorithms, in all their development stages, using increasingly advanced laboratory setups. In addition, the interfacing options and challenges of each stage of the chain are highlighted. The proposed testing chain is substantiated in an optimal centralised coordinated voltage control (CVC) algorithm and the final stage of the chain, namely the combination of control and power hardware-in-the-loop simulation, is presented in this study. As a specific example, the management technique for a storage system is implemented as part of the CVC algorithm. The laboratory results demonstrate that the proposed setup, despite its high complexity, enables the algorithm to be effectively and realistically tested as part of the overall system.

References

    1. 1)
      • 21. Noda, T., Filizadeh, S., Chevrefils, A.R., et al: ‘Interfacing issues in real-time digital simulators’, IEEE Trans. Power Deliv., 2011, 26, (2), pp. 12211230.
    2. 2)
      • 4. Conti, S., Greco, A.M.: ‘Voltage regulation through optimal reactive dispatching in active distribution networks’. MELECON, Ajaccio, France, May 2008, pp. 792798.
    3. 3)
      • 25. Muresan, M., Pitica, D.: ‘Software in the loop environment reliability for testing embedded code’. IEEE 18th Int. Symp. for Design and Technology in Electronic Packaging, Alba Iulia, Romania, October 2012, pp. 325328.
    4. 4)
      • 10. Faruque, M.O., Strasser, T., Lauss, G., et al: ‘Real-time simulation technologies for power systems design, testing, and analysis’, IEEE Power Energy Technol. Syst. J., 2015, 2, (2), pp. 6373.
    5. 5)
      • 7. Liu, X., Aichhorn, A., Liu, L., et al: ‘Coordinated control of distributed energy storage system with tap changer transformers for voltage rise mitigation under high photovoltaic penetration’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 897906.
    6. 6)
      • 20. Lehfuss, F., Lauss, G., Kotsampopoulos, P., et al: ‘Comparison of multiple power amplification types for power hardware-in-the-loop applications’. COMPENG, Aachen, Germany, June 2012, pp. 16.
    7. 7)
      • 14. Wang, J., Song, Y., Li, W., et al: ‘Development of a universal platform for hardware in-the-loop testing of microgrids’, IEEE Trans. Ind. Inf., 2014, 10, (4), pp. 21542165.
    8. 8)
      • 32. Riva, E., Sanseverino Quang, N.N., et al: ‘Optimal power flow in three-phase islanded microgrids with inverter interfaced units’, Electr. Power Syst. Res., 2015, 123, pp. 4856.
    9. 9)
      • 12. Jeon, J., Kim, J., Kim, H., et al: ‘Development of hardware in-the-loop simulation system for testing operation and control functions of microgrid’, IEEE Trans. Power Electron., 2010, 25, (12), pp. 29192929.
    10. 10)
      • 26. Werner, S., Masing, L., Lesniak, F., et al: ‘Software-in-the-loop simulation of embedded control applications based on virtual platforms’. 25th Int. Conf. on Field Programmable Logic Applications, London, England, September 2015, pp. 18.
    11. 11)
      • 2. von Appen, J., Stetz, T., Braun, M., et al: ‘Local voltage control strategies for PV storage systems in distribution grids’, IEEE Trans. Smart Grid, 2014, 5, (2), pp. 10021009.
    12. 12)
      • 17. Steurer, M., Edrington, C.S., Sloderbeck, M., et al: ‘A megawatt-scale power hardware-in-the-loop simulation setup for motor drives’, IEEE Trans. Ind. Electron., 2010, 57, (4), pp. 12541260.
    13. 13)
      • 30. Teixeira Pinto, R., Rodrigues, S.F., Kontos, E., et al: ‘Optimal power flow in MTDC networks for large offshore wind power plants: validation of the distributed voltage control strategy’. Industrial Electronics Society, IECON 2015, Yokohama, Japan, November 2015.
    14. 14)
      • 5. Kulmala, A., Repo, S., Järventausta, P.: ‘Coordinated voltage control in distribution networks including several distributed energy resources’, IEEE Trans. Smart Grid, 2014, 5, (4), pp. 20102020.
    15. 15)
      • 8. Jeong, K., Lee, H., Baek, Y., et al: ‘Coordinated voltage and reactive power control strategy with distributed generator for improving the operational efficiency’, J. Electr. Eng. Technol., 2013, 8, (6), pp. 742749.
    16. 16)
      • 13. Faruque, M.O., Dinavahi, V.: ‘Hardware-in-the-loop simulation of power electronic system using adaptive discretization’, IEEE Trans. Ind. Electron., 2010, 57, (4), pp. 11461158.
    17. 17)
      • 33. Kersting, W.H.: ‘Series impedance of overhead and underground lines’, in ‘Distribution system modeling and analysis’ (CRC Press, Boca Raton, FL, USA, 2002), ch. 4, pp. 77108.
    18. 18)
      • 24. Conti, S., Raiti, S., Tina, G.: ‘Simulink modelling of LV photovoltaic grid-connected distributed generation’. 18th Int. Conf. and Exhibition on Electricity Distribution, Turin, Italy, June 2005, pp. 15.
    19. 19)
      • 6. Anagnostopoulos, P., Papathanassiou, S., Hatziargyriou, N.: ‘Optimal coordinated control for enhancing DER integration in MV distribution networks’. CIRED – 23rd Int. Conf. on Electricity Distribution, Lyon, France, June 2015.
    20. 20)
      • 3. Chen, S., Hu, W., Su, C., et al: ‘Optimal reactive power and voltage control in distribution networks with distributed generators by fuzzy adaptive hybrid particle swarm optimisation method’, IET. Gener. Transm. Distrib., 2015, 9, (11), pp. 10961103.
    21. 21)
      • 28. CIGRÉ Task Force C6.04.02: ‘Benchmark systems for network integration of renewable and distributed energy resources’, May 2013.
    22. 22)
      • 31. Morad, M., Abdelmageed, A., Farag, H.E., et al: ‘A novel and generalized three-phase power flow algorithm for islanded microgrids using a newton trust region method’, IEEE Trans. Power Syst., 2013, 28, (1), pp. 190201.
    23. 23)
      • 19. Ren, W., Steurer, M., Baldwin, T.L.: ‘Improve the stability and the accuracy of power hardware-in-the-loop simulation by selecting appropriate interface algorithms’, IEEE Trans. Ind. Appl., 2008, 44, (4), pp. 12861294.
    24. 24)
      • 22. Javadian, S.A.M., Haghifam, M.-R.: ‘Protection of distribution networks in presence of DG using distribution automation system capabilities’. Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, USA, July 2008, pp. 16.
    25. 25)
      • 18. Lauss, G.F., Faruque, M.O., Schoder, K., et al: ‘Characteristics and design of power hardware-in-the-loop simulations for electrical power systems’, IEEE Trans. Ind. Electron., 2015, 63, (1), pp. 406417.
    26. 26)
      • 16. Palmintier, B., Lundstrom, B., Chakraborty, S., et al: ‘A power hardware-in-the-loop platform with remote distribution circuit cosimulation’, IEEE Trans. Ind. Electron., 2015, 62, (4), pp. 22362245.
    27. 27)
      • 15. Manbachi, M., Sadu, A., Farhangi, H., et al: ‘Real-time communication platform for smart grid adaptive volt-VAR optimization of distribution networks’. IEEE Int. Conf. on Smart Energy Grid Engineering (SEGE), 2015, pp. 17.
    28. 28)
      • 11. Keränen, J.S., Räty, T.D.: ‘Model-based testing of embedded systems in hardware in the loop environment’, IET Softw., 2012, 6, (4), pp. 364376.
    29. 29)
      • 1. Andrén, F., Bletterie, B., Kadam, S., et al: ‘On the stability of local voltage control in distribution networks with a high penetration of inverter-based generation’, IEEE Trans. Ind. Electron., 2014, 62, (4), pp. 25192529.
    30. 30)
      • 29. Vassilakis, A., Kotsampopoulos, P., Hatziargyriou, N., et al: ‘A battery energy storage based virtual synchronous generator’. IREP Symp. ‘Bulk Power System Dynamics and Control –IX’, Rethymnon, Greece, August 2013.
    31. 31)
      • 23. Khan, F., Massoud, A., Gastli, A.: ‘A Simulink model of an active island detection technique for inverter-based distributed generation’. 7th IEEE GCC Conf. and Exhibition, Doha, Qatar, November 2013, pp. 315319.
    32. 32)
      • 9. Kotsampopoulos, P., Lehfuss, F., Lauss, G., et al: ‘The limitations of digital simulation and the advantages of PHIL testing in studying distributed generation provision of ancillary services’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 55025515.
    33. 33)
      • 27. Papathanassiou, S., Hatziargyriou, N., Strunz, K.: ‘A benchmark low voltage microgrid’. CIGRé Symp. ‘Power systems with Dispersed Generation: Technologies, Impacts on Development, Operation and Performances’, Athens, Greece, April 2005.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1341
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1341
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address