Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimal tripping transmission lines scheme based on SCC level and voltage stability

The transmission capacity of the power grid is growing to meet the increasing electrical load demand in the past few decades. It makes the level of severity that short-circuit current (SCC) exceeds the interruption capability of circuit breakers much higher. To limit SCC, this study proposes a bi-objective optimisation model to determine the optimal tripping transmission lines scheme. In this proposed model, the objectives include the maximal effectiveness on limiting SCC and the minimal adverseness on voltage stability, which evaluate by the sensitivities of SCC and voltage stability margin on the tripping lines. Intelligence algorithms have been applied to solve the similar multi-objective problem. However, the optimisation methods cannot meet the requirement of the real-time application because the full-dimensional set of decision variables including all transmission lines is considered in the optimisation procedure. Thereby, the coordinated optimisation algorithm is adapted to accurately and fast achieve the optimal solution. The case study on the IEEE 39-bus system and a real-world 500 kV network in Guangdong province of China verify the effectiveness and practicality of the proposed method.

References

    1. 1)
      • 7. Sarmiento, H.G., Castellanos, R., Pampin, G., et al: ‘An example in controlling short circuit levels in a large metropolitan area’. Power Engineering Society General Meeting, 2003, July 2003, vol. 2, p. 594.
    2. 2)
      • 8. Radmanesh, H., Fathi, S.H., Gharehpetian, G.B.: ‘Novel high performance DC reactor type fault current limiter’, Electr. Power Syst. Res., 2015, 122, pp. 198207.
    3. 3)
      • 11. Wu, A.Y., Yin, Y.: ‘Fault current limiter applications in medium and high-voltage power distribution systems’, IEEE Trans. Ind. Appl., 1998, 34, (1), pp. 236242.
    4. 4)
      • 9. Haghl, M.T., Abapour, M.: ‘A new topology of fault-current limiter and its control strategy’. SICE-ICASE Int. Joint Conf., Bexco, Busan, Korea, October 18–21, 2006, pp. 55305534.
    5. 5)
      • 13. Zhang, Y.K., Cai, Z.X., Li, A.M., et al: ‘An optimization algorithm for short-circuit current limitation of 500 kV power grid by adjusting power grid configuration’, Autom. Electr. Power Syst., 2009, 33, (22), pp. 3439.
    6. 6)
      • 20. Yang, D., Zhao, K., Zhao, Y., et al: ‘Optimization and decision for limiting short circuit current considering sensitivity ranking’. 2014 Int. Conf. on Power System Technology (POWERCON), 20–22 October 2014, pp. 864870.
    7. 7)
      • 3. Jiang, L., Liu, J.-Y., Wei, Z.-B., et al: ‘An integrated short-circuit current limiting scheme for Sichuan 500 kV power grid considering Xinjiang power injection’. 2014 Int. Conf. on Power System Technology, 20–22 October 2014, pp. 294299.
    8. 8)
      • 16. Nguyen, T.C., Chan, S., Bailey, R., et al: ‘Auto-check circuit breaker interrupting capabilities’, IEEE Comput. Appl. Power, 2002, 15, (1), pp. 2428.
    9. 9)
      • 28. IEEE 10 Generator 39 Bus System. Available at http://www.scribd.com/doc/19864620/39-New-England.
    10. 10)
      • 22. Reyes-sierra, M., Coello Coello, C.A.: ‘Multi-objective particle swarm optimizers: a survey of the state-of-the-art (2006)’, Int. J. Comput. Intell. Res., 2006, 2, (3), pp. 287308.
    11. 11)
      • 17. Binh Dam, Q., Sakis Meliopoulos, A.P.: ‘Circuit breaker duty monitoring from the control center’. Power Systems Conf. and Exposition 2009. PSCE'09, 2009, pp. 16.
    12. 12)
      • 5. Didier, G., Bonnard, C.H., Lubin, T., et al: ‘Comparison between inductive and resistive SFCL in terms of current limitation and power system transient stability’, Electr. Power Syst. Res., 2015, 125, pp. 150158.
    13. 13)
      • 15. Yasukitada, H., Hiroshi, O., Atsushi, K.: ‘Analytical methods for determining a system configuration acceptable from viewpoints of both shot circuit current and voltage stability’, Electr. Eng. Jpn., 1998, 124, (3), p. 30.
    14. 14)
      • 27. Weiqing, S., Chengmin, W., Yan, Z., et al: ‘Active/reactive power coordinated optimization of power system based on Pareto optimality’, Autom. Electr. Power Syst., 2009, 33, (10), pp. 3842.
    15. 15)
      • 24. Zhang, N., Ye, H., Liu, Y.: ‘Decision support for choosing optimal electromagnetic loop circuit opening scheme based on analytic hierarchy process and multi-level fuzzy comprehensive evaluation’, Eng. Intell. Syst. Electr. Eng. Commun., 2008, 16, (4), pp. 311.
    16. 16)
      • 26. Leondes, C.T.: ‘Expert systems: the technology of knowledge management and decision making for the 21st century’ (Academic Press, 2002), pp. 122.
    17. 17)
      • 25. Kablan, M.M.: ‘Decision support for energy conservation promotion: an analytic hierarchy process approach’, Energy Policy, 2004, 32, (10), pp. 11511158.
    18. 18)
      • 6. Hongyang, H., Zheng, X., Xi, L.: ‘Fault current limiters based dynamic segmentation technique for multi-infeed HVDC systems’, Proc. CSEE, 2012, 32, (19), pp. 5864.
    19. 19)
      • 12. Xiongping, Y., Li, L., Yangxu, L., et al: ‘The running program to limiting short-circuit current in Guangdong 500 kV power grid’, Autom. Electr. Power Syst., 2009, 33, (7), pp. 104107.
    20. 20)
      • 10. Kamolyabutra, D., Mitan, Y., Tsuji, K.: ‘Power system stabilizing control and current limiting by a SMES with a series phase compensator’, IEEE Trans. Appl. Supercond., 2001, 11, (1), pp. 17531756.
    21. 21)
      • 21. Reda Mansour, M., Geraldi, E.L., Costa Alberto, L.F., et al: ‘A new and fast method for preventive control selection in voltage stability analysis’, IEEE Trans. Power Syst., 2013, 28, (4), pp. 44484455.
    22. 22)
      • 4. Abramovitz, A., Ma Smedley, K.: ‘Survey of solid-state fault current limiters’, IEEE Trans. Power Electron., 2012, 27, (6), pp. 27702782.
    23. 23)
      • 1. Scherer, H.N., Vassell, G.S.: ‘Transmission of electric power at ultra-high voltages: current status and future prospects’, Proc. IEEE, 1985, 73, (8), pp. 12521278.
    24. 24)
      • 18. Li, H., Bose, A., Zhang, Y.: ‘On-line short-circuit current analysis and preventive control to extend equipment life’, IET Gener. Transm. Distrib., 2013, 7, (1), pp. 6975.
    25. 25)
      • 23. Zhang, W., Liu, Y.: ‘Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm’, Int. J. Electr. Power Energy Syst., 2008, 30, (9), pp. 525532.
    26. 26)
      • 19. Martinez, J.A., Martin-Arnedo, J.: ‘Voltage sag studies in distribution networks – part II: voltage sag assessment’, IEEE Trans. Power Deliv., 2006, 21, (3), pp. 16791688.
    27. 27)
      • 14. Sugimoto, S., Kida, J., Arita, H., et al: ‘Fault current limiting system for 500 kV power systems’, Electr. Eng. Jpn., 1999, 127, (1), pp. 1122.
    28. 28)
      • 2. Kazemi, S., Lehtonen, M.: ‘Impact of smart subtransmission level fault current mitigation solutions on service reliability’, Electr. Power Syst. Res., 2013, 96, (2013), pp. 915.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-gtd.2016.1305
Loading

Related content

content/journals/10.1049/iet-gtd.2016.1305
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address